Research on Technology Development for Reclamation of Waste Tire Rubber

By

J .A. Kamal Padmasiri

M.Sc.

2007

Research on Technology Development for Reclamation of Waste Tire Rubber

By

J .A. Kamal Padmasiri

This thesis was submitted in partial fulfillment of the requirement for the Master Degree of Science in Polymer Science and Technology of the Faculty of Applied Science,

University of Sri Jayawardenepura, Sri Lanka.

September 2007

The work described in this thesis was carried out by me under the supervision of Dr. Laleen Karunanayaka and a report on this has not been submitted in whole or in part to any university or any other institution for another degree.

J A Kamal Padmasiri

I certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the university for the purpose of evaluation

Dr.Laleen Karunanayaka

AKNOWLEDGEMENT

I would like to express my sincere gratitude to Dr.Laleen Karunanayaka, the course coordinator of the Master Degree of Science Course in Polymer Science and Technology for the keen interest taken in providing proper guidance and assistance as my supervisor.

I also wish to express my sincere thanks to the Chief Executive Office of Encore Technologies (Pvt) Ltd, Mr A.Goonawardena and Deputy Chief Executive Office Mr.H. Abeysinghe for giving me an opportunity to undertake this project.

I should express my kind thanks to Mr.Janaka Wijesinghe, the Assistant Technologist and the all laboratory staff of Encore Technologies (Pvt) Ltd helping me all the time.

May I also express my special thank to the Mr. Sarath Jayathilaka, Head of Materials at Industrial Technology Institute and his staff for their support.

Finally I would like to mention with gratitude all my lecturers, colleagues, friends and relatives who encouraged me to achieve my goal.

ABSTRACT

The disposal of waste rubber is a serious environmental problem and the automotive wastes contribute major portion for waste rubber. The reuse and reclaiming are the potential solution for waste tire problem.

Several grinding process are used for converting of shredded tire pieces to ground tire crumb and ground tire crumb is a main component in the reclaimed rubber. The chemical, ultrasonic, microwave and biological reclaiming process have been developed and some processed are commercially operated with using ground tire rubber.

The aim of this study was to develop chemical recamling process for ground tire crumb to achieve optimum processing and physical properties with maintaining low cost, low processing temperature and minimum machinery involvement.

In this study ground tire rubber was mixed with various proportion of chemical reclaiming agent and paraffinic rubber process oil then preheated to specified temperature for specified time period. Then sample was subjected to a mechanical shear process. The further improvement was carried out by partial replacement of paraffinic oil by natural oil and introducing physical peptizes and divalent metal stearates.

The processing properties of each step was measured by Mooney viscometer and physical properties such as Hardness, Resilience, Abrasion, Tensile strength, Modulus, Elongation at break and Cut resistance were measured. The selected trials were carried out in pilot scale.

From this study it appears that the low dosage of reclaiming agent together with blend of paraffin oil and natural oil behave as effective reagent for reclaiming process and the addition of Zinc soaps of fatty acids, divalent metal stearates enhance the process further.

ABBREVIATIONS

ASTM	American Society for testing and materials	
BR	Butadiene Rubber	
CBS	N- cyclohexyl 2- benzothiazolesulfenamide	
Contd.	Continuation	
DIN	Deutsches Institute for Norming	
DPG	Diphenyl guanidine	
EV	Efficient Vulcanization	
GTC	Ground Tire Crumb	
IIR	Butyl Rubber	
IPPD	N –Isopropyl –N'-phenyl-p-phenylenediamine	
ISO	International Standards Organization	
MOR	2-(4-Mprpholinothio)benzothiazole	
MBT	2 Mercaptobenzothiozole	
MBTS	Bis (2 benzothioazoy)l disulphide	
МН	Highest Modulus	
ML	Lowest modulus	
pphc	Parts per hundred parts of crumb	
pphr	Parts per hundred parts of rubber	
rpm	rounds per minutes	
SBR	Styrene Butadiene Rubber	
STD	Standard Deviation	
TBBS	N-tert Butyl 2-benzothiazylesulfenamide	

TMQ	2,2,4-Trimethyl -1,2 dihydroquinoline
TMTD	Tetramethyl thiuram disulphide
TMTM	Tetramethyl thiuram monodulphide
ZBX	Zinc butyl xanthate
ZDEC	Zinc diethyl dithiocarbomate
ZDMC	Zinc dimethyl ditiocarbomate
ZIX	Zinc isopropyl xanthate
Zn UFA	Zinc soaps of unsaturated fatty acid

LIST OF TABLES AND FIGURES

TABLES

1.1	General types of devulcanization process	3
1.2	Characteristics of ambient and cryogenic ground crumb	8
1.3	Ground tire crumb product designation	8
1.4	Chemical analysis & material specification of reclaimed rubber	9
1.5	Typical properties of petroleum oils	11
1.6	Classification of accelerators	13
1.7	Comparison of cure rate of accelerators	14
2.1	List of raw materials used for reclamation process	23
2.2	List of raw materials used for compound preparation	24
2.3	List of machinery used for laboratory trials	24
2.4	List of machinery used for production scale trials	25
2.5	List of testing procedures	26
2.6	Mixing procedure	27
2.7	Mixing procedure for compounding	28
2.8	List of machinery used	28
2.9	Formulation for trial no 1	29
2.10	Preheating temperature of trial no 1	29
2.11	Formulation for trial no 2	30
2.12	Formulation for trial no 3	30
2.13	Formulation for trial no 4	31

2.14	Formulation for trial no 5	31
2.15	Formulation for pilot scale batches	32
2.16	Standard formulation for analysis of reclaimed rubber	33
2.17	Forces and dimension of hardness apparatus	36
2.18	Dimension of tensile test piece	36
3.1	Comparison of analysis of trial no 1	45
3.2	Analysis of Trial no 1 reclaimed rubber	50
3.3	Analysis of Trial no 2 reclaimed rubber	52
3.4	Analysis of Trial no 3 reclaimed rubber	54
3.5	Analysis of Trial no 4 reclaimed rubber	56
3.6	Analysis of Trial no 5 reclaimed rubber	57
3.7	Analysis of pilot scale batches	62
FIGU	JRES	
1.1	The flow chart of typical grinding systems	7
1.2	Block diagram of chemical devulcanization system	16
2.1	Typical torque curve	35
3.1	Variation of Mooney viscosity	58
3.2	Variation of MH	58
3.3	Variation of Hardness	59
3.4	Variation of resilience	59
3.5	Variation of tensile strength	60
3.6	Variation of 100 % Modulus	60

LIST OF CONTENTS

Title	i
Acknowledgements	v
Abstract	vi
Abbreviations	viii
List of tables and figures	х
List of contents	xiii
Special note	xvi
CHAPTER 1	
1. Introduction	1
1.1 Chemical devulcanization process	3
1.1.1 Devulcanization with organic solvents	3
1.1.2 Devulcanization of waste tire by controlled oxidation	4
1.1.3 Devulcanization by organic disulphides & mercaptens	4
1.1.4 Devulcanization by inorganic compounds	5
1.1.5 The De-link develcanization process	5
1.1.6 Levgum devulcanization process	6
1.2 Materials	6
1.2.1 Ground tire crumb	6
1.2.2 Petroleum Oil	10
1.2.3 Reclaiming agent	11

1.2.5	Physical Peptizer	12
1.2.6	Calcium Stearate	12
1.2.7	Magnesium Stearate	12
1.2.8	Activators	12
1.2.9	Vulcanization agent	12
1.2.10	Accelerators	13
1.3	Manufacturing Technology	14
1.3.1	Effect of reclaiming agents	14
1.3.2	Effect of processing oil in reclaiming process	15
1.3.3	Effect of high temperature preheating	17
1.3.4	Effect of mastication on open mill	17
1.4	Processing and physical properties of reclaimed rubber	18
1.4.1	Mooney Viscosity	18
1.4.2	Rheological properties	19
1.4.3	Hardness	19
1.4.4	Tensile stress strain properties	19
1.4.5	Rebound resilience	20
1.4.6	Precent devulcanization	20
1.4.7	Abrasion	21
1.5	Objectives of Experiment	22
CHAP	TER 2	
2. Mat	erials and Methodology	23
2.1	Raw Materials	23

2.1.1	Group A reclamation process	23
2.1.2	Group B compound Stage	23
2.2	Machinery and Equipments	24
2.3	Testing parameters	26
2.4	Method	26
2.5	Compound Preparation	27
2.6	Formulation and processing Parameters	29
2.7	Formulation of pilot scale trials	32
2.8	Formulation for compound preparation	32
2.9	Testing Procedures	33
2.9.1	Determination of Mooney Viscosity	33
2.9.2	Determination of Rheological Properties	34
2.9.3	Determination of Hardness	35
2.9.4	Determination of Stress strain properties	37
2.9.5	Determination of Rebound Resilience	39
2.9.6	Determination of Percent Devulcanization of crumb rubber based on crosslink	40
	Density.	
2.9.7	determination of Abrasion	43
CHAP	TER 3	
3.1	Results and Discussion	45
3.2	Conclusion	64
3.3	Suggestions for future work	65
REFE	RENCES	67

APPENDIX 1

APPENDIX II

68 70

- XV -