Oral hypoglycaemic activity of Ipomoea aquatica Forsk. and its active constituents

By

Thusharie Sugandhika Malalavidhane

PhD

2002

DECLARATION BY CANDIDATE

The work described in this thesis, was carried out by me; under the supervision of Prof. E. R. Jansz and Prof. (Mrs.) S.M.D.N. Wickramasinghe (Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura) and a report on this has not been submitted in whole or in part to any University for another Degree/ Diploma.

30.12.2002 Date

Jar alli MU Signature of candidate

ť

DECLARATION BY SUPERVISORS

We certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the University for the purpose of evaluation.

Prof. E.R. Jansz

S. M. N. Wickramaeyh Prof. S.M.D.N. Wickramasinghe

Oral hypoglycaemic activity of Ipomoea aquatica Forsk.

and its active constituents

By

Thusharie Sugandhika Malalavidhane

Department of Biochemistry and Clinical Chemistry,

Faculty of Medicine,

University of Kelaniya,

Talagolla Road,

Ragama

Thesis submitted to the University of Sri Jayewardenepura for the award of the Degree of Doctor of Philosophy in Biochemistry on 'Oral hypoglycaemic activity of *Ipomoea aquatica* Forsk., and its active constituents'

December 2002

TO ALL MY TEACHERS

TABLE OF CONTENTS

		Page No.
I.	LIST OF TABLES	xi
II.	LIST OF FIGURES	xiii
III.	ABBREVIATIONS	xvi
IV.	ACKNOWLEDGEMENTS	xviii
V.	ABSTRACT	xx

1. INTRODUCTION	1		
1.1 General introduction	··· 1		
1.1.1 Importance of herbal remedies in the treatment			
of diseases	1		
1.1.2 Diabetes mellitus: a brief history			
1.2 Medicinal plants in the treatment of diabetes mellitus	3		
1.3 Sri Lankan scenario	3		
1.4 Ipomoea aquatica Forsk.	- 4		
1.4.1 General description	4		
1.4.2 Studies on Ipomoea aquatica	6		
1.5 Scope of the study	8		

I

2. LITERATURE RE	EVIEW	10
2.1 Early concepts of diabetes r	nellitus	10
2.2 Diabetes, the modern conce	pts	11
2.2.1 Type I, Insulin dep	pendent diabetes mellitus (IDDM)	11
2.2.2 Type II, Non insul	in dependent diabetes mellitus (NIDDM)	12
2.2.3 Other types of dial	betes mellitus	12
2.2.4 Gestational diabet	es mellitus	13
2.2.5 Impaired glucose t	olerance	14
2.3 Complications of diabetes n	nellitus	15
2.3.1 Retinopathy	3	15
2.3.2 Nephropathy		15
2.3.3 Neuropathy		
2.4 Treatment of diabetes mellitus		
2.4.1 Dietary control		17
2.4.2 Anti-diabetic drugs	3	18
2.4.3.i Sulphor	nylureas	18
2.4.3.ii Biguan	ides	19
2.4.3.iii Alpha g	glucosidase inhibitors	21
2.4.3.iv Thiazol	idinediones	26
2.4.3.v Benzoic	acid derivatives	27
2.4.3.vi Insulin	therapy	27
2.4.3.vii New tar	gets in diabetic therapy	28
2.5 Plants with hypoglycaemic properties 32		
2.5.1 Sri Lankan plants o	finterest	32

II

2.5.1.i Artocarpus heteroplyllus	32
2.5.1.ii Gymnema sylvestre	33
2.5.1.iii Hygrophylla longifolia	43
2.5.1.iv Lagerstromia speciosa	43
2.5.1.v Momordica charantia	44
2.5.1.vi Musa sapientum	45
2.5.1.vii Nelumbo nucifera	45
2.5.1.viii Osbeckia octandra	46
2.5.1.ix Salacia reticulata	46
2.5.1.x Syzygium cumini	47
2.5.1.xi Tinospora cordifolia	47
2.5.2 Molecules with hypoglycaemic activity	48
2.5.3 Mechanisms of action of plant bioactive molecules	49
2.5.3.i Insulin secretion from pancreatic beta cells	49
2.5.3.ii Inhibition of intestinal glucose absorption	49
2.5.3.iii Activation of glycolytic enzymes	49
2.5.3.iv Enhancing glycogen synthesis	50
2.5.3.v Increasing glucose uptake	50
2.6 Induction of experimental diabetes	50
2.6.1 Alloxan-induced diabetes	52
2.6.2 Induction of diabetes by streptozotocin (STZ)	52
2.6.3 Cyproheptadine induced hyperglycaemia	53
2.7 Significance of an edible plant hypoglycaemic agent	53

III

3. MATERIALS AND METHODS			54	
3.1 Materials				54
	3.1.1	Water		54
	3.1.2 (Chemical	s	54
		3.1.2.i	General chemicals	54
		3.1.2.ii	Special chemicals	54
		3.1.2.iii	Enzymes	54
	3.1.3 I	Plant mate	erial	55
	3.1.4 /	Animals		55
	3.1.5 I	Diabetic p	atients	55
	3.1.6 0	Chromato	graphic materials	56
		3.1.6.i	Gel filtration chromatography	56
		3.1.6.ii	Thin layer chromatography	56
		3.1.6.iii	Paper chromatography	56
		3.1.6.iv	Column chromatography	56
3.2	Metho	ds		57
	3.2.	General	methods	57
		3.2.1.i	Ethical clearance	57
		3.2.1.ii	Determination of the moisture content	57
		3.2.1.iii	Housing of rats	57
		3.2.1.iv	Preparation of extracts	58
		3.2.1.v	Administration of extracts, glucose	
			and tolbutamide	58
		3.2.1.vi	Drawing of blood	58

IV

	3.2.1.vi	i Type of animal experiments	58
	3.2.1.vi	ii Glucose challenge	59
	3.2.1.ix	Determination of glucose	59
	3.2.1.x	Determination of key hepatic enzymes	60
	3.2.1.xi	Determination of uric acid	62
	3.2.1.xi	i Determination of glycated haemoglobin levels	62
	3.2.1.xi	ii Determination of insulin	64
3.2.2	Experin	nents to determine the oral hypoglycaemic effect	
	of the w	hole, aqueous extract and the shredded leaves of	
	Іротоес	a aquatica on normoglycaemic, Wistar rats	65
	3.2.2.i	Effect of a single dose	65
	3.2.2.ii	Dose curve	65
	3.2.2.iii	Time course	65
•	3.2.2.iv	Effect of multiple doses	66
	3.2.2.v	Comparison with tolbutamide	66
3.2.3	Effect or	n diabetic, Wistar rats	66
	3.2.3.i	Streptozotocin- induced diabetic rat	66
	3.2.3.ii	Alloxan- induced diabetic rats	67
3.2.4	Effect of	dietary fibre	67
3.2.5	Long ter	m feeding of the fresh, edible portion to rats	68
	3.2.5.i	Effect on key hepatic enzymes viz., ALT,	
		AST, ALP and γ GT levels	68
	3.2.5.ii	Effect on uric acid levels	68

V

3.2.5	Long ter	rm feeding of the fresh, edible portion to rats	68
	3.2.5.i	Effect on key hepatic enzymes viz., ALT,	
		AST, ALP and y GT levels	68
	3.2.5.ii	Effect on uric acid levels	68
	3.2.5.iii	Effect on fasting blood sugar and	
		glycated haemoglobin levels	69
3.2.6	Studies	on human diabetic subjects	69
3.2.7	Experim	nents directed at the mechanism of action	69
	3.2.7.i	Determination of the serum insulin levels of	
		the diabetic patients	69
	3.2.7.ii	Intestinal glucose absorption in the rats	70
3.2.8	Activity	directed fractionation	70
	3.2.8.i	Oral hypoglycaemic activity of the	
		ethanolic extract and the aqueous filtrate	70
	3.2.8.ii	Fractionation by gel filtration chromatography	71
	3.2.8.iii	Effect of Sephadex-separated fractions on rats	71
	3.2.8.iv	Preparative thin layer chromatography with	
		Fractions I and II	71
	3.2.8.v	Effect of the extracted thin layer chromatography	
		bands on rats	72

VI

3.2.9	Prelimina	ary chemical tests	72
	3.2.9.i L	iebermann – Burchard test	72
	3.2.9.ii O	rtho-cyanidin test	73
	3.2.9.iii F	Froth test	73
3.2.10). Studies o	n Band 1	73
	3.2.10.i	Determination of the approximate	
	.t	molecular weight of active Band 1	73
	3.2.10.ii	Testing the Band 1 for the presence of sugars	73
	3.210.iii	Preparative thin layer chromatography	
		with Band 1	74
	3.2.10.iv.	Effect of different sub bands on rats	74
	3.2.10.v.	Medium pressure liquid chromatography	74
3.2.11	Attempts	to elucidate the structure of MPLC 1 and 2	75
	3.2.11.i	Determination of the class of flavonoid	75
	3.2.11.ii	Enzyme hydrolysis	75
	3.2.11.iii	Infrared spectroscopy of MPLC 1 and 2	75
	3.2.11.iv.	Activity of the hydrolyzed and unhydrolyzed	
		MPLC 1	76
3.2.12	Identificat	ion of sugars released from the glycoside	76
3.2.13	Infra – red	spectroscopy of the aglycone of MPLC 1	77
3.2.14.	Ultra viole	t and visible spectroscopy of MPLC 1 MPLC 2	
	and querci	trin	77

3.2.15 Statistical analysis

77

4. RESULTS

4.1 Moisture content of I. aquatica	78
4.1.1 Dean and Stark method	78
4.1.2 Drying to constant weight	78
4.2 Experiments to determine the oral hypoglycaemic effect of	
the whole, aqueous extract and the shredded, fresh edible portion	78
4.2.1 Experiments on normoglycaemic, Wistar rats	78

4.2	2.1.i E	ffect of a single dose of the aqueous extract of	
	Ι.	aquatica on the serum glucose concentration in	
	n	ormal rats challenged with glucose	78
4.2	2.1.ii	Dose-response curve for I. aquatica	79
4.2	2.1.iii	Time course of I. aquatica	79
4.2	2.1.iv	Effect of multiple doses	84
4.2	2.1.v	Comparison with tolbutamide	84
4.2.2 Stud	ies on	diabetic rats	86
4.2	2.2.i	Effect on the streptozotocin-induced diabetic rats	86
4.2	2.ii	Effect on alloxan-diabetic rats	86
4.3 Effect of d	lietary	fibre on the hypoglycaemic activity	87
4.4 Effect of th	he fres	h edible portion on serum analytes	92
4.4.1 Effec	et on th	e key hepatic enzymes	
viz., a	alkalin	e phosphatase, alanine aminotransferase,	
aspar	tate an	ninotransferase and γ glutamyl transpeptidase	92
4.4.2 Effec	t on th	e uric acid levels	92

VIII

78

after long-term feeding944.5 Studies on diabetic patients944.6 Mode of action of the whole extract964.6.1 Effect on insulin levels of type II diabetic patients964.6.2 Effect on intestinal glucose uptake in rats96		
4.5 Studies on diabetic patients944.6 Mode of action of the whole extract964.6.1 Effect on insulin levels of type II diabetic patients964.6.2 Effect on intestinal glucose uptake in rats96		
4.6 Mode of action of the whole extract964.6.1 Effect on insulin levels of type II diabetic patients964.6.2 Effect on intestinal glucose uptake in rats96		
4.6.1 Effect on insulin levels of type II diabetic patients964.6.2 Effect on intestinal glucose uptake in rats96		
4.6.2 Effect on intestinal glucose uptake in rats 96		
4.7 Activity guided fractionation 99		
4.7.1 Oral hypoglycaemic effect of the ethanol extract and		
the aqueous filtrate 99		
4.7.2 Effect of pooled chromatography fractions on		
serum glucose levels 101		
4.7.3 Thin layer chromatography with Fractions 1 and II 101		
4.7.4 Effect of different thin layer chromatography bands on		
the blood sugar levels of Wistar rats 103		
4.7.5 Chemical tests on different bands 103		
4.7.5.i Liebermann-Burchard's test 103		
4.7.5.ii O-cyanidin test 106		
4.7.5.iii Froth test 106		
4.7.6 Studies with Band 1 106		
4.7.6.i Approximate molecular weight of		
the active Band 1 106		
4.7.6.ii Testing for the presence of sugars in Band 1 107		

IX

4.7.6.iii Preparative thin layer chromatography	К.
with Band 1	107
4.7.6.iv Oral hypoglycaemic effect of the diffe	rent
sub bands obtained from Band 1	111
4.7.7 Medium pressure liquid chromatography	115
4.7.8 Hypoglycaemic activity and the structural charact	eristics
of the isolates of MPLC	115
4.7.8.i Determination of the class of flavonoic	i 115
4.7.8.ii Infrared spectroscopy of the isolates	116
4.8 Hydrolysis of the isolates	118
4.8.1 Hydrolysis of MPLC 1	118
4.8.2 Hydrolysis of MPLC 2	122
4.8.3 Activity of the hydrolyzed and unhydrolyzed MPL	C 1 in rats 122
4.8.4 Infra red spectroscopy of the aglycone of MPLC 1	122
4.9 Ultra violet/ visible spectroscopy of MPLC 1, MPLC 2	
and quercitrin	123
5. DISCUSSION	130
6. REFERENCES	151

Х

I. LIST OF TABLES

		Page No.
Table 2.1	Pharmacokinetics of the sulphonylureas	22
Table 2.2	Drug-drug interactions: first- and second-generation	
	sulphonylureas	23
Table 2.3	Pharmacokinetics of nonsulphonylurea antidiabetic ag	ents:
	biguanides, α -glucosidase inhibitors, thiazolidinedione	S
	and benzoic acid derivatives	25
Table 2.4	Common insulin preparations	31
Table 2.5	Medicinal plants used in Sri Lanka for the control of	
	diabetes mellitus	34
Table 2.6	Examples of some chemical groups of different antidia	ibetic
	plant bio-molecules	51
Table 4.1	Effect of <i>I. aquatica</i> on serum glucose levels, at	
	zero time, one, two and three hours after the administra	ation
	of a single dose of the aqueous extract	82
Table 4.2	Key hepatic enzymes and uric acid levels	
	of Wistar rats fed with the fresh, edible portion	
	of I. aquatica for 8 weeks	93
Table 4.3	Effect of different extracts of I. aquatica on the	
	blood glucose levels of Wistar rats subjected	
	to a glucose challenge	100
Table 4.4	Effect of different chromatography fractions of I. aqua	ıtica
	on blood sugar levels of glucose loaded Wistar rats	102

Table 4.5	Characteristic features of different groups of flavonoids	108
Table 4.6	Characteristics of sub bands obtained by	
	preparative TLC of Band 1	113
Table 4.7	Effect of the hydrolyzed and non-hydrolyzed MPLC 1	
	on the blood sugar levels of rats subjected	
	to a glucose challenge	124
Table 5.1	Examples of some commonly consumed plant materials,	
	used in the treatment of diabetes mellitus	131

II. LIST OF FIGURES

	Га	ge No.
Figure 1.1	Ipomoea aquatica Forsk., the wet type	5
Figure 1.2	Mature I. aquatica with white flowers	5
Figure 4.1	Effect of a single dose of <i>I. aquatica</i> on serum glucose	
	values of healthy, Wistar rats after a glucose challenge	80
Figure 4.2	Dose-response curve of I. aquatica	81
Figure 4.3	Time course for a single dose of I. aquatica	83
Figure 4.4	Comparison of the oral hypoglycaemic activity of	
	I. aquatica with that of tolbutamide	85
Figure 4.5	Effect of the shredded, fresh, edible portion of	
	I. aquatica on the FBS of streptozotocin-induced	
	diabetic rats	88
Figure 4.6	Effect of the shredded, fresh, edible portion of I. aquatica	
	on the fasting and post glucose serum glucose	
	concentrations of alloxan-induced diabetic rats	89
Figure 4.7	Effect of I. aquatica on the body weight of alloxan-induc	ed
	and streptozotocin-induced diabetic Wistar rats	90
Figure 4.8	Effect of the whole extract (WE), soluble dietary fibre	
	(SDF) and insoluble dietary fibre (IDF) of <i>I. aquatica</i> on	
	the serum glucose concentration of Wistar rats,	
	challenged with glucose	91
Figure 4.9	Effect of <i>I. aquatica</i> on serum glucose concentration of	
	Type II diabetic individuals	95

NI

D.

Figure 4.10	Effect of <i>I. aquatica</i> on serum insulin levels of Type II	
	diabetics subjected to a glucose challenge	97
Figure 4.11	Intestinal glucose uptake by rats after	
	a single dose of the whole, aqueous extract of <i>I. aquatica</i>	98
Figure 4.12	Diagrammatic representation of spots obtained by TLC	
	on Fr I and Fr II	104
Figure 4.13	Effect of different preparative TLC bands on the	
8	Serum glucose concentrations of Wistar rats	
	subjected to a glucose challenge	105
Figure 4.14	Diagrammatic representation of the TLC of the active	
	Fr 1 and 2 to determine the relative molecular weight	
	of Band 1	109
Figure 4.15	Diagrammatic representation of the TLC to confirm	
	the presence of sugars in Band 1	110
Figure 4.16	Diagrammatic representation of the preparative TLC	
	of Band 1	112
Figure 4.17	Effect of different sub bands on the blood sugar levels	
	of Wistar rats subjected to a glucose challenge	114
Figure 4.18	Forestal and BAW chromatograms of MPLC 1 and 2	117
Figure 4.19	Infra red spectrum of MPLC 1	119
Figure 4.20	Infra red spectrum of MPLC 2	120
Figure 4.21	Infra red spectrum of quercitrin	121
Figure 4.22	Infra red spectrum of the aglycone of MPLC 1	125
Figure 4.23	Infra red spectrum of the penta-hydroxy flavone	126

Figure 4.24	Infra red spectrum of quercetin dihydrate	127
Figure 4.25	Ultra violet/visible spectrum of MPLC 1	128
Figure 4.26	Broad absorption given by MPLC 1 in the yellow region	128
Figure 4.27	Ultra violet/visible spectrum of MPLC 2	129
Figure 4.28	Ultra violet/visible spectrum of quercitrin	129
Figure 5.1	Quercitrin	142
Figure 5.2	Quercetin	143
Figure 5.3	Flavone and flavanol ring structures	143
Figure 5.4	Possible positions of the sugars in the flavone glycoside	145

ABBREVIATIONS

ADP	Adenosine diphosphate
ALP	Alkaline phosphatase
ALT	Alanine aminotranferase
ALX	Alloxan monohydrate
ANOVA	Analysis of variance
AST	Aspartate aminotransferase
ATP	Adenosine triphosphate
BAW	n Butanol: glacial acetic acid
BC	before Christ
BEN	n Butanol: ethanol: ammonia = 7:2:5 ratio
Co-A	Co-enzyme A
СРТ	Carnitine palmitoyltransferase
D	Dextro
DM	Diabetes mellitus
DP	Dipeptidyl peptidase
EC	Enzyme classification
ELIZA	Enzyme linked immunosorbent assay
Forsk.	Forskal
γGT	Gamma glutamyl transpeptidase
GDM	Gestational diabetes mellitus
GIP	Glucose-dependent insulinotropic polypeptide
GLP	Glucagon-like peptide
GLUT	Glucose transporter

GSK	Glycogen synthase kinase
н	Hour
HSL	Hormone sensitive lipase
IDDM	Insulin dependent diabetes mellitus
IDF	Insoluble dietary fibre
IGT	Impaired glucose tolerance
IR	,Infra red
L	Laevo
Linn.	Linnaeus
MPLC	Medium pressure liquid chromatography
NAD	Nicotinamide adenine dinucleotide ⁺
NADH	Nicotinamide adenine dinucleotide
NIDDM	Non-insulin dependent diabetes mellitus
PDH	Pyruvate dehydrogenase kinase
SDF	Soluble dietary fibre
SEM	Standard error of mean
STZ	Streptozotocin
TLC	Thin layer chromatography
WE	Whole extract

ACKNOWLEDGEMENTS

This study would not have been possible without the support of many.

I wish to express my deepest and most sincere gratitude to my supervisors, Prof. E.R. Jansz and Prof. (Mrs.) S.M.D.N. Wickramasinghe, Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura for their excellent guidance. keen, interest. encouragement. fruitful discussions, parental advice and also for the financial assistance through IPICS: SRI: 07 and USJP/A/SHI/PRA/PAR/98/02 grants. Dear Sir and Madam. it is indeed an honour to be your student, thank you again.

My sincere gratitude goes to Dr. (Mrs.). M.S.A. Perera, Dr. S. Sivayogan, Dr. (Mrs.) K. Wanigasooriya and all the staff members of the Family Practice Centre, Faculty of Medical Sciences: for their very kind support during the study with diabetic patients.

I am deeply indebted to Lohini, Inoka and Menaka for their unending support, willingness to help and also for being pillars of strength during my hardships. I am also very thankful to all my junior colleagues.

I am grateful to all the academic staff members of the Department of Biochemistry, Faculty of Medical Sciences, for their numerous support, discussions and advice.

My thanks are due to Dr. (Mrs.) S. Jayasekara and the staff of the Animal Centre, Medical Research Institute for the training on handling of rats.

My thanks are also due to Dr. (Mrs.) P. Tissera, Department of Botany for authenticating the plant and Prof. W.S. Fernando, Prof. A. Abeysekara and the staff of the Post-graduate Research Laboratory, Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura for their kind support.

I am thankful to Prof. (Mrs.) M.I. Thabrew for her advice and keen interest and Dr. W. Abeywickrema and the staff of the Computer Centre, Faculty of Medicine, University of Kelaniya for their help during the preparation of the manuscript.

I wish to say a big " thank you" to all my research colleagues and the non-academic staff members of the Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura for all their support during my study.

My deep gratitude goes to my parents and brothers for their untiring support and blessings.

Finally I am very thankful to the Faculty of Medical Sciences, University of Sri Jayewardenepura for the innovative moves and attitudes towards Medical Education without which this thesis would not have come into existence.

5

Oral hypoglycaemic activity of Ipomoea aquatica Forsk. and its active constituents

by Thusharie Sugandhika Malalavidhane

ABSTRACT

Ipomoea aquatica Forsk. (Convolvulaceae) is a common green leafy vegetable, which has been in human consumption since antiquity. According to the indigenous medicinal system, the plant is supposed to possess an insulin-like principle. A study was done to determine the oral hypoglycaemic activity of the plant in healthy and diabetic Wistar rats as well as Type II diabetic patients. Activity directed fractionation was also carried out. A single as well as multiple doses of the aqueous, whole extract effectively reduced serum glucose concentration of healthy Wistar rats subjected to a glucose challenge. Multiple doses of the fresh, edible portion of the plant exerted a statistically significant oral hypoglycaemic effect in streptozotocin and alloxan-induced diabetic Wistar rats. The optimal dose in the rats was 3.4 g/kg and the optimal time of activity was 2 h after the administration of the extract.

The oral hypoglycaemic activity exerted by the plant was comparable to that of tolbutamide. This hypoglycaemic effect was significantly higher than the effect of the soluble and insoluble dietary fibre extracted from *I. aquatica*. The active constituents were contained in the ethanol extract of the fresh, edible portion.

The results showed that the long-term consumption of *I. aquatica* has no possible toxicity on the liver and kidney. Toxicity studies which were carried out for 8 weeks did not show any increase in the levels of key hepatic enzymes viz; alkaline phosphatase, alanine amino transferase, aspartate amino transferase and γ -glutamyl transpeptidase. Nevertheless, there was a significant reduction in the serum alkaline phosphatase level of the Test group when

compared with the Control. Uric acids levels in the Test and Control groups were not significantly different from each other indicating there was no possible renal damage. Glucose challenge studies with Type II diabetics showed a significant reduction in the serum glucose levels 2 h post glucose load when administered the aqueous, whole extract. Fractionation of the ethanol extract by gel filtration chromatography with Sephadex G25 yielded 2 oral hypoglycaemic fractions when tested on rats. When further purified, the active fraction appeared to contain flavonoids. These flavonoids comprising flavones and flavanols were found to separate into 5 sub bands on preparative TLC out of which 4 were oral hypoglycaemic in rats. MPLC on with a solvent gradient of, hexane \rightarrow chloroform \rightarrow ethylacetate \rightarrow methanol and water with a dilution factor of 6, yielded MPLC 1 with methanol and water in the ratio of 99.168: 0.832, while MPLC II was eluted with ethyl acetate and methanol in the ratio of 93.7: 6.3. Infra red spectroscopy of the 2 compounds along with standard indicated that MPLC I was a flavone glycoside while MPLC II was a flavanol glycoside. Enzyme hydrolysis and TLC of the compounds showed the presence of glucose and rhamnose in MPLC 1 and rhamnose only in MPLC II The sugar moeties were necessary for the oral hypoglycaemic activity of MPLC II as shown by the inactivity of the aglycone of the compund. The infra red spectra of the aglycone indicate the presence of a tri hydroxy flavone. Studies directed at the mechanism of action showed that the extract enhanced the absorption of glucose in the intestine in the rats; and at the same time removed the absorbed glucose efficiently from circulation. The extract has enhanced the uptake of glucose by the peripheral tissues. The extract lowered the serum insulin levels of the Type II diabetics subjected to a glucose challenge, indicating that the extract may have increased the receptor sensitivity of insulin. The mechanism of action of the plant extract may be by enhancing the tissue uptake of glucose, which could be mediated via an increase in the sensitization of the receptors for insulin.