Preliminary investigations on the geographical distribution of White Spot Syndrome Virus (WSSV) in black tiger shrimp *(Penaeus monodon)* brood stocks and post larvae in Sri Lanka and the relationship of WSSV with the occurrence of bacteria in grow-out ponds

> U. A. S. K. Edirisinghe (Reg; no MSc/LS/0011)

Dissertation submitted in partial fulfillment of the requirements for the Master of Science Degree in Fisheries and Aquatic resources development and management 2001/2002.

Department of Zoology Faculty of Graduate Studies University of Sri Jayawardanepura Nugegoda Sri Lanka.

DECLARATION OF AUTHOR

I do here by declare that the thesis titled "Preliminary investigations on the geographical distribution of White Spot Syndrome Virus (WSSV) in black tiger shrimp (Penaeus monodon) brood stocks and post larvae in Sri Lanka and the relationship of WSSV with the occurrence of bacteria in grow-out ponds" is based on the work carried out by me under the supervision of Dr P.P.G.S.N Siriwardane Director General, National Aquatic Resources Research and Development Agency (NARA), Crow Island, Mattakkuliya, Colombo 15 and Dr. Ajantha de Alwis, Senior lecturer, Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda. It describes the results of my own investigation and independent research except where due references have been made in the text. No part of the thesis has been submitted earlier or concurrently for the same or any other degree to any other university.

11/07/05

Signature of the candidate

Date

We certify that the above statement made by the candidate is true and that this thesis is suitable for the submission to the university for the purpose of evaluation.

S.N. Simurchena Signature of Supervisor

Signature of Co-supervisor

CONTENTS

Abstract	i
Acknowledgement	iv
List of tables	v
List of figures	vi
List of abbreviations	vii
CHAPTER ONE INTRODUCTION (1-21)	
1.0 Introduction	1
1.1 History of Shrimp farming	3
1.1.1 History of Shrimp farming in Sri Lanka	3
1.1.2 History of Shrimp farming in other countries	6
1.2 Shrimp Diseases and Occurrence	7
1.2.1 Global Situation	7
1.2.2 Local Situation	7
1.2.3 Host Range for WSSV	9
1.2.4 Causative Agent for WSSV	10
1.2.5 Synonyms for Disease	10
1.3 Methods used in Disease Diagnosis	11
1.3.1 PCR Method	17
1.3.2 Treatment	18
1.3.3 Management Measures	19
1.4 Objectives of the Study	21

CHAPTER TWO MATERIALS AND METHODS (22-30)

	2.0 Materials and methods	22
	2.0.1 Sampling sites	22
	2.0.2 Measurement of Water Quality Parameters in the water intake	
	sources and in shrimp farms	25
	2.1 Detection of WSSV by diagnosis PCR	27
	2.1.0 Collection, transportation and preservation of shrimp samples	27
	2.1.1 Two-step PCR analysis for WSSV	27
	2.2 Detection of Vibrio sp in grow-out pond and intake water	27
	2.2.0 Collection, transportation and preservation of water samples	27
	2.2.1 Bacteriological testing	28
	2.2.1.0 Sterilization glass ware	28
	2.2.1.1 Plating technique	28
	2.2.1.2 Calculation of colony form units for bacterial counts	28
	2.3 Preservation Technique	29
	2.3.0 Identification and Confirmation of Vibrio sp	29
	2.4 Statistical analysis	30
Cł	HAPTER THREE RESULTS (31-56)	
	3.0 Determination of Geographical Distribution of WSSV in brood-stock	31
	shrimps and shrimp post larvae	
	3.1 Occurrence of Vibrio sp in the Grow-out Ponds	38
	3.2 Relationship between the occurrence of Vibrio sp. and major physical	49
	and chemical parameters in different water intake sites	
	3.3 Relationship between Occurrence of Vibrio and WSSV	52

CHAPTER FOUR DISCUSSION AND CONCLUSIONS (57-62)

4.0 Geographical Distribution of WSSV in Brood-stock shrimps and po	ost 57
larvae and possible routes of infection	
4.1 Occurrence of Vibrio sp in Grow-out Ponds	58
4.2 Relationship between the occurrence of Vibrio and WSSV	59

4.3Relationship between environmental parameters and occurrence of 59 Vibrio colonies 4.4 Familiarize with the PCR diagnosis technique 60 4.5 Recommendations 61 Annex 1 63 Annex 2 65 Annex 3 68 Annex 4 70 Annex 5 77 Annex 6 78 Annex 7 84 Annex 8 86 References 87

Abstract

Sustainability of shrimp industry in Sri Lanka is threatened by White Spot Syndrome Virus (WSSV). However, the information pertaining to this virus in Sri Lanka is scarce. In addition to WSSV, the disease "Luminous Vibriosis" caused by species of the bacteria *Vibrio* also has been recently recognized as a serious threat affecting shrimp production in the Northwestern coast of Sri Lanka but this aspect also has been poorly dealt with.

In view of these two important diseases, present study was carried out to investigate some important aspects, namely,

- a) the geographical distribution of WSSV in Black Tiger shrimp (*Penaeus monodon*) brood stocks and post larvae (PL), which is the most important commercial shrimp species of the country;
- b) the occurrence of *Vibrio sp.* in grow-out ponds and the environmental parameters associated with them and
- c) possible relationship between the occurrence of *Vibrio sp.* and WSSV disease in grow-out ponds.

The prevalence and geographic distribution of WSSV infection in *Penaeus monodon* shrimp brooders collected from Potuvil, Chilaw, Negombo, Hendala and Beruwala from June 2003 to January 2004 period were studied using two step Polymerase Chain Reaction (PCR) method. A total of 100 samples of brooders shrimp were screened for WSSV. As for the post larvae, 90 samples (each containing 100 post larvae of age 10-15 days) that were obtained from the brooders taken from the same collecting centers were screened. According to the study, brooders taken from Hendala were the significantly highest WSSV infected compared to the brooders taken from other locations (P<0.01).

Similarly, the post larvae obtained from brooders bought from Hendala were also the significantly highest WSSV infected PL compared with the PL obtained from others (P<0.01; Chi-square test). Brooders taken from Potuvil or their post larvae were not infected with WSSV. These results suggest that the brood stocks have acted as a route of infection of WSSV.

The occurrence of *Vibrio* bacteria species which was detected through TCBS selected media method was evident in all intake water sources and relevant grow-out ponds which also showed a statistical significance (P< 0.05). This suggests that the infection of *Vibrio* sp. spreads through the intake wate, into the grow-out ponds. There was a significant relationship recorded between the WSSV infection and the occurrence of green consisting of *Vibrio mimicus*, *Vibrio vulnificus*. *Vibrio parahaemolyticus*, *Vibrio harveyi* and yellow consisting of *Vibrio cholerae*, *Vibrio alginolyticus*, *Vibrio fluvialis*, *Vibrio metehnikovii* type *Vibrio* sp (P<0.05). According to the results in the present study, determination of the maximum level of *Vibrio*-green and yellow colonies of the intake water at 50% threshold value was possible which was 55 colonies/ ml and 29 colonies/ ml respectively.

These results also confirm some important management aspects that have been suggested in shrimp farming industry. They are as follows;

- Checking the brooders by using two step PCR method before taken into the hatchery and screening post larvae before stocking in grow-out ponds are two important aspects in health management of shrimps.
- Vibrio counts of intake waters and grow-out pond should be kept at a maximum level of 55 colonies/ ml for green colonies and 29 colonies/ ml for yellow colonies.

ii

 Establishing high standards in water quality and health management practices for hatcheries and grow-out ponds to prevent cross contamination and spread of the WSSV infection in the environment should be a priority to revive the shrimp industry in Sri Lanka.

Acknowledgement

I would like to express my sincere gratitude to Dr. P.P.G.S.N Siriwardane former Director General NARA for offering me the opportunity facility to under take my project work at NARA and for guiding me in the project work.

I extend my thanks to my co-supervisor Dr. (Mrs) Ajantha De Alwis Senior Lecturer, Department of Zoology, University of Sri Jayewardenepura for her guidance throughout the completion of the report and for her untiring efforts.

My appreciation is extended to Mr. Mahinda Kulatilake and Miss Prajani Heenatigala, Research Officer, Inland Aquatic Resources Division, and NARA for their endless support and arranging me the transport facilities to carry out the research work.

I'm extremely indebted to Miss Hemali Rupika, Research Assistant Inland Aquatic Division NARA for her generous help in PCR assay and clinical manifestation of WSSV disease of shrimps throughout the project which made this study a pleasurable success.

It is my obligation to be thankful to Mrs. Kumudu Hettiarchchi, Mrs. Sujeewa Ariyawansa, Mrs. Indunil, and Mr. Sudeera of Post Harvest Technology Division, National Aquatic resources development Research Agency (NARA) for giving me help in numerous ways to use the facilities in the microbial analysis.

I gratefully acknowledge Dr. M.G.Dharmasiri of National Institute of Technical Education (NITE) Sri Lanka, Ratmalana for his valuable support to correct the statistics in this study.

My heartfelt gratitude also goes Miss Chamni Bandara and Mr. Rukmal Eranda for the support given in various ways.

Finally I would wish to thank all persons who gave their fullest support and encouragement in completing the report.

iv

LIST OF TABLES

Table 1.1 Major culturable Shrimp Species around the World	2
Table 1.2 Shrimp production and Export in Sri Lanka (mt)	4
Table 3.1 Results of the PCR analysis for WSSV infections in brooder shrimps taken from five different locations	34
Table 3.2 Results of Chi-Square test: Potuvil, Chilaw, Hendala, Negombo and Beruwala	34
Table 3.3 One-way ANOVA: Comparison of WSSV infection versus location	35
Table 3.4 Results of the PCR analysis for WSSV infection of Post Larvae	37
samples obtained from brooders taken from five different locations	57
Table 3.5 Results of Chi-Square test for post larvae samples obtained from	38
brooders taken from Potuvil, Chilaw, Hendala, Negombo and Beruwala	
Table3.6 Mean value of Vibrio colony counts (green) from intake	39
water sources of four selected grow out farms	
Table 3.7 Kruskal-Wallis Test: Farm versus Vibrio-green colonies	43
Table 3.8 Kruskal-Wallis Test: Vibrio-yellow colony versus Farm	43
Table 3.9 Mann – Whitney test : Farm versus Vibrio-green colonies	43
Table 3.10 Mann – Whitney test : Farm versus Vibrio-yellow colonies	46
Table 3.11 Mean values of Physical parameters and colony form count of	50
Vibrio sp in three different main water sources	
Table 3.12 Correlations: results of different intake water sources with pH,	51
Salinity, Temperature, Vibrio-yellow and Vibrio-green colonies	
Table 3.13 The environmental factors and grow-out results of same batch	53
(Potuvil) of brooders Penaeus monodon fry in four farms	

V

LIST OF FIGURES

Figure 1.1 Shrimp infected with WSSV disease	14
Figure 1.2 Photomicrograph tissue of infected WSSV	15
Figure 1.3 Ultra thin section showing WSSV virions	16
Figure 1.4 A WSSV-infected nucleus	17
Figure 2.1 Map of Sri Lanka	23
Figure 2.2 Map of the Selected shrimp farms in North Western Province	24
Figure 2.3 Map of Study area in North Western Province of Sri Lanka	26
showing Dutch Canal, Mundal lake and Puttalam estuary	
Figure 3.1 Nested PCR amplified products	32
Figure 3.2 Nested PCR amplified products	33
Figure 3.3 Mean values of Vibrio colony counts in three different intake	40
water sources of four selected grow out farms	
Figure 3.4 Comparison of three physical parameters (PH, Salinity and	41
Temperature) in four different grow-out ponds	
Figure 3.5 Vibrio sp colony count in four different grow-out ponds	42
Figure 3.6 Mean log values of three different intake water sources	51
Figure 3.7 Regression Analysis: Death rate versus Vibrio-Green colony	55
Figure 3.8 Regression Analysis: Death rate versus Vibrio-Yellow colony	56

LIST OF ABBREVATIONS

APW	Alkaline Peptone Water
BMNV	Baculo Midgut Necrosis Virus
bp	Base Pairs
BWSS	Bacterial White Spot Syndrome
CBV	China Baculo Virus
CDNA	Complementory DNA
CFU	Colony Form Unit
DNA	De-oxy Ribo Nucleic Acid
DNTP	dinucleotide Tri Phosphate
DO	Dissolved Oxygen
EDTA	Ethidium Dichromate Tri Acetate
HPV	Hepatopancreas Parvolike Virus
IHHNV	Infectious Hypodermal Haemocytic Necrosis Virus
LOVV	Lymphoid Organ Vaculization V irus
LPM	Long-term Preservation Medium
MBV	Monodon Baculo Virus
NaCl	Sodium Chloride
PCR	Polymerase Chain Reaction
RNA	Ribo Nucleic Acid
RT-PCR	Reverse Trancriptase Polymerase Chain Reaction
TCBS	Thiosulphate Citrate Bile salt Sucrose
TBE	Tri Borate EDTA
TSI	Triple Sugar Iron
UV	Ulta Violet

CHAPTER 01

1.0 Introduction

The giant black tiger shrimp *Peneaus monodon* is one of the most important culturable species, among nearly 136 species of edible peneaied shrimps. Its large size, fast growth rate, high survival rate, resistance to handling, successful breeding in captivity, high price and high market potential, makes it one of the predominant culture species in the Indo-Pacific region (Hambrey, 1996). Table 1.1 shows the major culturable Shrimp Species around the World.

Asia is the largest shrimp farming region and has produced about 83.3% of the world's total shrimp production in 1994 (Anon, 1997), but the level decreased to 72% in the year 2000 (Anon, 2000). The western world has contributed about 16.7% in 1994 (Anon, 1997) but it increased up to 28% in 2000 (Anon, 2000). Thailand has been the leading country in marine shrimp farming. In the year 2000, it has exported about 250,000 metric tons of shrimps (Anon, 2001). The second largest producer is Equador.

The rapid expansion and intensification of shrimp farming worldwide has been accompanied by the occurrence of diseases, which has threatened the development of the industry (Bonzie, 1988; Lightner & Redman, 1998; Hossain *et al.*, 2001) and it is the main constraint to the sustainable shrimp aquaculture (Subasinghe and Barg, 1998). The viral & bacterial infections have been found to cause most of the production losses in

different parts of the world (Boonyratpalin et al., 1992; Wongteerasupaya et al., 1995; Bachere, 1998).

Table 1.1 Major culturable Shrimp Species around the World

Species	Common name	Major countries that culture the species
Penaeus monodon	Tiger shrimp	Asia, Africa, Australia with all other countries of
P. merguiensis	Banana shrimp	cultured shrimps Indonesia, Malaysia, Vietnam, Thailand
P. indicus	Indian white shrimp	India, Malaysia, Saudi Arab, Thailand
P. chinensis	Chinese white shrimp	China, Taiwan
P. japonicus	Kuruma shrimp	Japan, Taiwan, Australia
P. penicillatus	Red tailed shrimp	Taiwan
P. vannamei	Western white shrimp	Central America and North
P. stylirostris	Blue leg shrimp	America, Brazil USA, Central America,
P. esculentus		Brazil Australia
P. brasiliensis	Spotted pink shrimp	Brazil
P. setiferus	sponed print simility	USA
Metapenaeus ensis	Sand shrimp	Vietnam, Malaysia

Source: World Shrimp Farming (1999).

1.1 History of shrimp farming

1.1.1 History of shrimp farming in Sri Lanka

Until early 1960's the shrimp fishery in Sri Lanka was an entirely lagoon and estuary by-catch fishery with an approximate production of 1000 metric tons per year which increased to 4000 metric tons per year at the beginning of the 1980's (Siriwardane, *and* De Alwis, 1988). In the last decade, the rearing techniques for shrimps have made a large progress and have reached an industrial dimension in Asia where it has always been a subsistence activity. Demand for shrimps also has been rising rapidly in the international market during this period. Shrimp farming on a commercial scale in Sri Lanka was first started by Messrs Lever Brothers in a farm covering 0.7ha, in 1977. However, real expansion of farmi,ng in Sri Lanka occurred in mid 1980's (Siriwardane,1988; Jayasinghe ,1997). Since then, it has become a main non-traditional foreign exchange earner (Siriwardane, 1988; Jayasinghe 1997a,1997b).

Among the 136 edible coastal shrimp species of Sri Lanka, Black Tiger shrimp (*Peneaus monodon*), is being used in commercial aquaculture (Siriwardane, 2000). In order to face the demand in the three major markets. namely, Japan, USA, Europe and largely in response to high export prices, a number of small scale entrepreneurs and a few large multinational companies embarked in shrimp farming. Realizing the importance of increasing shrimp production and the availability of unpolluted brackish water sources and suitable land that can be utilized for pond construction, the Government of Sri Lanka