Protective measures for the current Latex protein

1

allergy problem- solution to a serious threat

to our Natural Rubber

Industry

By

Kalu Arachchilage Kumudini Dilrukshi Chandrasekera.

Thesis submitted to the University of Sri Jayawardenepura for the award of the Degree of Master of Philosophy in Chemistry on Polymer Chemistry

DECLARATION BY AUTHOR

The work described in this thesis was carried out by me under the supervision of Dr. W.M.G Seneviratne, and Dr. Laleen Karunanayake and a report on this has not been submitted in whole or in part to any University for another Degree / Diploma.

!

Dandase tora

K. Kumudini Dilrukshi Chandrasekera

DECLARATION BY SUPERVISORS

"We certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the University for the purpose of evaluation."

Dr. W.M.G Seneviratne Deputy Director Research (Technology) Rubber Research Institute

Rathmalana.

AN 2007

Dr. Laleen Karunanayake

Senior Lecturer,

Department of Chemistry,

University of Sri Jayawardenepura,

Nugegoda.

Dr. Laleen Karunanayake Senior Lecturer Department of Chemisty University of Sri Jayawardenapura. Dedicated to my husband daughter Dulmini

&

Son Methmiran

TABLE OF CONTENTS

1

Ι

		LIST OF FIGURES	VII
		LIST OF TABLES	IX
		LIST OF ABBREVIATIONS	XI
		ACKNOWLEDGMENT	XII
		ABSTRACT	XIII
1		INTRODUCTION	1
2		LITERATURE REVIEW	5
2.1		Constituents of Natural Rubber (NR-latex)	5
	2.1.1	The rubber phase	6
	2.1.2	The aqueous phase	8
	2.1.3	Lutoid and other particulate phases	8
	2.1.4	Protein in fresh latex	8
2.2		Preservation of Natural rubber latex.	9
	2.2.1	Importance of Preservation	9
2.3		Concentration of Natural rubber latex	11
	2.3.1	Importance of concentrations	11
	2.3.2	Concentration of NR latex by Centrifugation	12
2.4		Vulcanization (Cross-linking) of Natural rubber.	13
	2.4.1	Accelerated Sulphur Vulcanization	14
	2.4.2	Post vulcanization	19
	2.4.3	Pre-vulcanization	19
2.5		Protein removable methods	20
	2.5.1	Papain as a Proteolytic Enzyme	20
	2.5.2	Chlorination as a protein removable method	22
2.6		Radiation Pre-vulcanization	26
	2.6.1	Mechanism of the Radiation pre-vulcanization process	27
	2.6.2	Advantages of RVNR latex	29

	2.6.2	Advantages of RVNR latex	29
	2.6.3	Application of RVNR Latex	29
2.7		Poly (Vinyl Alcohol) PVA as protein removable chemical	30
	2.7.1	Structure of PVA and properties	30
2.8		Technology of processing of natural rubber latex dipped	32
		products manufacture (gloves)	
3		METERIALS AND METHODS	36
3.1		Preparations of Materials	36
	3.1.1	Preparation of Low Ammonia TMTD/ZnO (LATZ) and	
		Enzymatic Deproteinized (DPNR) (Single and Double)	
		Centrifuged Latex.	36
	3.1.2.	Preparation of Dispersions.	38
	3.1.2.1	50% Zinc oxide dispersion	38
	3.1.2.2	50% Sulphur dispersion	38
	3.1.2.3	50% ZDC dispersion	38
	3.1.3	Preparation of Cast Films	38
	3.1.4	Preparation of examination Gloves	39
	3.1.4.1	Preparation of Coagulant Solution	39
	3.1.4.2	Compounding and the maturation of latex	40
	3.1.4.3	Dipping Process.	41
	3.1.4.4	Drying, Curing and leaching.	41
	3.1.4.5	Stripping	41
3.2		Characterization of LATZ and DPNR Centrifuged Latex	42
3.3		Chemical and Tensile Properties of Vulcanized films	42
	3.3.1	The Degree Of Vulcanization	42
	3.3.2	Tensile Properties of Latex Based Films	43
	3.3.3	Tensile properties of aged vulcanizates	44
3.4		Measurement of Extractable Protein content.	45
3.5		Clonal effect on EP content of various types of latices.	45

	3.5.1	Effect of single and double centrifugation on EP content	45
	3.5.2.	Effect of Deproteinization on EP content	46
	3.5.3.	Effect of post-vulcanization on EP content of LATZ	
		and DPNR latices.	46
3.6.		Effect of Sulphur Pre-Vulcanization on Extractable	46
		Protein Content (EP) and Tensile Properties	
	3.6.1.	Preparation of Sulphur pre-vulcanized latex.	46
	3.6.2.	Effect of leaching solution on EP and Tb	47
	3.6.2.1.	Leaching in Teepol and NaCl solutions	48
	3.6.2.2.	Leaching in CHCl 3: Methanol mixture.	48
	3.6.2.3.	Leaching in hot water and Running hot water.	48
	3.6.2.4.	Effect of Chlorination on EP and Tb	49
3.7		Effect of Radiation Pre-vulcanization on EP Content	49
	3.7.1	Radiation pre-vulcanization of NR	49
	3.7.2.	Effect of leaching of RVNR on EP and Tensile Strength	50
	3.7.3.	Effect of leaching time of Radiation pre-vulcanization and	51
		Sulphur pre- vulcanization on EP content.	
3.8		Effect of Incorporation of Polyvinyl Alcohol on Extractable	51
		Protein (EP) Content	
	3.8.1	Preparation of PVA incorporated centrifuged latex	51
	3.8.2	Characterization of PVA incorporated latex.	51
	3.8.3	Preparation of Dipped films (Gloves) and cast films.	52
	3.8.3.1	The degree of vulcanization	52
	3.8.3.2	Preparation of cast films	52
	3.8.3.3	Preparation of examination gloves	52
	3.8.4	Effect of leaching of Polyvinyl Alcohol incorporated latices	52
		(cast films) on Extractable Protein content (EP) and Tensile	
		properties.	

3.8.4.1 Wet-Gel leaching procedure.

3

	3.8.4.2	Dry (post- cure) leaching procedure. 52	2
	3.8.4.3	Separation of Extractable protein (EP) using SDS –polyacrylamide gel Electrophoresis	53
	3.8.5	Effect of polyvinyl Alcohol (PVA) incorporation on Extractable	
		protein content (EP) and Tensile properties of laboratory scale	54
		made examination gloves	
4.		RESULTS	56
4.1		Physical and Chemical Properties of Different Types of Latex.	56
	4.1.1	TMTD/ZnO preserved centrifuged latex (LATZ-CL).	56
	4.1.2.	High Ammonia deproteinized centrifuged NR latex.(DPNR-CL)	56
4.2.		Clonal Variation on Extractable Protein Content (EP)	57
	4.2.1	Effect of Single and Double Centrifugation on EP Content.	57
4.3		Effect of Deproteinization on EP content in different types of clones	58
4.4		Effect of post vulcanization on extractable protein content in DPNR	ł
		and LATZ (single and double) centrifuged latices	60
4.5.		Effect of Sulphur pre-vulcanization on EP content and Tensile	61
		properties.	
	4.5.1	Leaching of Pre-vulcanized latices	63
4.6		Effect of Radiation pre-vulcanization on EP content.	64
	4.6.1	Leaching of RVNR latex films on EP content and Tensile properties.	67
	4.6.2	Effect of leaching time on EP content of Radiation pre-vulcanization	68
		and Sulphur pre-vulcanization	
4.7		Effect of Incorporation of PVA on Extractable Protein Content.	69
	4.7.1	Characteristics of PVA incorporated latex	69
	4.7.2	Effect of Leaching on EP Content of PVA Incorporated Latices.	70
	4.7.3	Separation of EP using Sodium dodecyl sulphate	78
		Polyacrylamide gel Electrophoresis	

IV

	4.7.4	Effect of PVA incorporation on EP content and Tensile	80
		properties of laboratory made examination gloves	2
5		DISCUSSION.	86
5.1		Effect of Clonal variation and double centrifugation on EP content	86
5.2		Effect of Deproteinization on EP content of different	86
		types of clones.	
5.3		Effect of Post vulcanization on EP content and Tensile properties	87
		of Enzymatic deproteinized latices and low Ammonia TMTD/ZnO	
		preserved latices.	
5.4		Effect of Sulphur Pre-vulcanization on EP content and Tensile	
		properties	88
	5.4.1	Effect of leaching solution on EP content and Tensile strength of	89
		Sulphur pre-vulcanized NR latices.	
5.5		Effect of Radiation pre-vulcanization on EP content	91
	5.5.1	Effect of leaching of RVNR latex films on EP content and Tensile	92
		strength.	
	5.5.2	Effect of leaching time on EP content of Radiation pre-vulcanization	93
		and Sulphur pre-vulcanization	
5.6		Effect of incorporation of PVA on Extractable Protein content	93
	5.6.1	Effect of PVA on latex properties	93
	5.6.2	Effect of leaching (wet gel leaching and post vulcanized leaching)	
		on EP content of PVA incorporated latices	94
	5.6.3	Separation of EP from NR films using SDS –polyacrymide	95
		gel Electrophoresis	
	5.6.4	Effect of PVA incorporation on EP content and tensile	96
		properties of laboratory made examination gloves	

ŀ

CONCLUSIONS		98
REFERANCES		101
APPENDIX		
Apendix I		111
Apendix II	4	117
Apendix III		118
Apendix IV		119
Apendix V		122

6 7

8

ţ

LIST OF FIGURES

Figure 2.1 Electron micrograph of various latex particles.	6
Figure 2.2 Structure of cis-1,4-polyisoprene	7
Figure 2.3 Diagrammatic section through bowl of de laval centrifuge illustrating path	
of latex	13
Figure 2.4 Diagrammatic illustration of Sulphur vulcanization process	16
Figure 2.5 Typical chemical groupings present in a sulphur-vulcanized NR network.	17
Figure 2.6 Polyisoprene vulcanization	18
Figure 2.7 Schematic representation of the steps involved in catalysis by the	21
Cysteine peptidase type of enzyme.	
Figure 2.8 Products formed after chlorination	23
Figure 2.9 Comparison of surgeons glove rubber samples slid against finger skin	24
Figure 2.10 SEM photomicrographs of chlorinated surgeons glove surfaces	25
Figure 2.11 Procedure for the production of dipped products using RVNR latex	26
Figure 2.12 Structure of polyvinyl alcohol	30
Figure 2.13 Natural rubber latex glove manufacturing process	34
Figure 3.1 Dumb bell shape tensile test pieces	44
Figure 4.1 Effect of single and double Centrifugation on EP content	58
with the variation of clone type	
Figure 4.2 Effect of Deproteinization and Centrifugation on EP content	59
of different clones	

Figure 4.3 Effect of Post-vulcanization on Extractable protein content	61
of LATZ and DPNR latices	
Figure 4.4 Effect of Sulphur pre-vulcanization on EP content	62
Figure 4.5 Effect of radiation pre-vulcanization on EP content	66
Figure 4.6 Effect of leaching time on EP content of Radiation pre-vulcanization	68
and Sulphur pre-vulcanization	
Figure 4.7 Effect of post cure leaching followed by chlorination on EP content &	74
Tensile strength of cast film (LATZ-CL)	
Figure 4.8 Effect of wet gel leaching on extractable protein content of Tensile strength	75
of LATZ-CL cast films;	
Figure 4.9 Effect of post cure leaching & chlorination on EP content of PVA	76
incorporated cast films	
Figure 4.10 Effect of wet gel leaching followed by post- cure leaching on EP content	77
& Tensile strength of PVA incorporated cast films	
Figure 4.11 Sodium dodecyl sulphate -polyacrylamide gel electrophoresis gel of	78
extractable proteins from post vulcanized cast films	
Figure 4.12 The Infrared spectrum of the PVA incorporated NR latex gloves.	82
Figure 4.13 SEM photomicrographs of laboratory made examination gloves	84

•

LIST OF TABLES

Pag	e
-----	---

Table	2.1	Typical composition of NR latex.	5
Table	2.2	Typical composition of the rubber phase of Hevea latex	7
Table	2.3	Types of preservative systems commonly use in NR industry.	10
Table	2.4	Application of RVNR latex	30
Table	3.1	Preparation of LATZ and DPNR (single and double) centrifuge latex	36
Table	3.2	Salt coagulant formula	39
Table	3.3	Examination glove formula	40
Table	3.4	Compounding formula for Sulphur pre-vulcanization	47
Table	3.5	Gel recipe of 10% separating gel and 4% stacking gel	54
Table	4.1.	Latex properties of LATZ centrifuged latex.	56
Table	4.2.	Latex properties of DPNR-CL	56
Table	4.3.	Variation of EP content in single and double centrifuged latex of different	57
		types of clones.	
Table	4.4	Effect of Deproteinization of single and double centrifuged latex of	59
		different types of clones on EP content.	
Table	4.5.	Effect of post vulcanization on Extractable protein content of Enzymatic	60
		deprotenized latices and Low Ammonia TMTD/ZnO preserved latices.	
Table	4.6.A	Effect of sulphur pre-vulcanization on EP content of different types of	
		latices	62
.Table	4.6.1	B Tensile Properties of vulcanized cast films prepared from	63
		Sulphur pre-vulcanized latex	
Table	4.7	Effect of leaching solution on Extractable Protein content and tensile	64
		Properties of vulcanized cast films prepared from Sulphur pre-vulcanized	
		NR latex.	

Table	4.8.A.	Effect of Radiation Pre-vulcanization on EP content in different type of	65
		latices.	
Table	4.8.B.	Tensile properties of vulcanized cast films prepared from Radiation	65
		pre-vulcanized NR latices.	
Table	4. 9A	Effect of leaching solution on EP content and Tensile strength of	67
		RVNRL cast films.	
Table	4.9B	Effect of leaching time on EP content of Radiation pre-vulcanization and	68
		Sulphur pre-vulcanization	
Table	4.10	Latex Properties of PVA incorporated NR latex	69
Table	4.11	Effect of wet-gel leaching followed by post-vulcanized leaching on EP	71
		content and Tensile strength of PVA incorporated cast films.	
Table	4.12	Effect of post-cure leaching followed by Chlorination on EP content and	72
		Tensile strength.	
Table	4.13	Effect of wet-gel leaching followed by post cure leaching and	72
		Chlorination on EP and Tensile strength.	
Table	4.14.	Effect of post-cure leaching and chlorination on EP content of PVA	73
		incorporated vulcanized cast films	
Table	4.15.	EP content of industrially made Gloves	73
Table	4.16	Effect of post- cure leaching on EP and Tb of Gloves prepared from	80
		LATZ- CL	
Table	e 4.17.	Effect of post-cure leaching on EP content and Tensile properties of PVA	82
		incorporated gloves	
Table	e 4.18	Peak assignment of the Infrared spectrum of the PVA incorporated NR	83
		Latex gloves.	

LIST OF ABBREVIATIONS

- BCA Bicinchoninic acid
- B Bromination
- C Chlorination
- CL Centrifuged Latex

DCL - Double Centrifuged Latex

DPNR- Deproteinized Natural Rubber

EP - Extractable Proteins

LATZ - Low Ammonia TMTD/ZnO stabilized

MC - Mild Chlorination

NR - Natural Rubber

PVA - Poly Vinyl Alcohol

RRIC - Rubber Research Institute Clone

TMTD - Tetra Methyl Thiurane Disulphate

Tb - Tensile strength

ACKNOWLEDGEMENT

I owe a sense of gratitude to Dr. W.M.G Seneviratne and Dr. Laleen Karunanayake, my supervisors for their guidance, encouragement and constructive criticism extended throughout the cause of this study.

I am very much grateful to Dr. L.M.K Tillekeratne, Director RRISL for allowing me to carryout this study and his guidance.

I wish to express my sincere gratitude to Dr. Karnika de Silva for her guidance, encouragement extended to the course of this study.

This project was funded by National Science Foundation (Grant No. RG/99/C/07). Their financial support is gratefully acknowledged.

I wish to record my special thank to Mr. H.N.K.K Chandralal for his immeasurable support offered to me.

Many thanks and appreciations are also made to Mr. S.L.G. Rangith for his assistance in the lab work. Thanks are also due to the entire staff of Rubber Research Institute, Colombo office & laboratories, Rathmalna for their support.

Enormous thanks are due Ansell Lanka Company for irradiating the latex, Head Chemistry department University of Colombo for allowing me to carry out some laboratory work. Head plant science department for allowing me to take SEM photos and Atomic Energy Authority for supplying glove formers.

Finally, I am deeply grateful to my husband Ananda, for his understanding and constant encouragement.

Protective measures for the current latex protein allergy problem - solution to a serious threat to our Natural Rubber Industry

•

Kalu Archchilage Kumudini Dilrukshi Chandresekera

ABSTRACT

Natural rubber latex based products being used extensively world wide. Along with the wide spread use of latex based products there is a great concern about allergies which are associated mainly with latex based products. This is caused in certain individuals due to the contact of leachable proteins of these products with their skin. Therefore, the objective of this investigation was to minimize the Extractable proteins (EP) in rubber articles during manufacture.

Various techniques and methodologies were examined for reduction of leachable proteins. The effects of the use of latices such as double centrifuged latex, gamma irradiated latex, enzymatic deproteinized latex, post vulcanized, sulphur prevulcanized and latex treated with poly vinyl alcohol in cast films and PVA incorporated laboratory made examination gloves were studied to ascertain their effect on the EP content. The reduction of leachable proteins and Tensile strength were studied for films leached using various leaching methodologies. Wet gel leaching and post–cure leaching were carried out for both chlorinated and unchlorinated products using cast and dipped product films. Solutions used as leaching medium were hot water, NaCl, commercially available washing liquid etc.

EP was measured using BCA protein assay method. Nature of molecular structure of PVA incorporated gloves were scrutinized using Fourier Transform Infra Red Spectrometer (FTIR). Separation of extractable proteins was carried out using Sodium dodecyl sulphate poly Acrylamide gel electrophoresis (SDS-PAGE). The glove surface torpography was examined using scanning electron micrographs (SEM).

EP content was highly varied depending on the clone type. Double centrifugation effectively reduce EP in raw latex. However, EP content varied during the processing depending on compounding and other techniques adopted in the vulcanization. Papain treatment reduced EP in different types of clones in different ways. The rate of extraction of proteins was initially high and the most of the extractable proteins leached out within the first 20 minutes.

Irradiation of latex greatly enhanced the solubility of some proteins. Leaching of irradiated films gives lower EP. Lower levels of EP could be achieved by the incorporation of PVA into NR latex. Post cure leaching is far more effective than wet gel leaching for achieving lower EP content within short period of time. Hot water leaching of PVA incorporated gloves showed lower EP content of below 95 μ g/g. PVA was capable of changing the glove surface, resulting easy donning, too.