DOI: 10.31357/fapsmph.2002.00594

M. Phil

Screening existing black pepper (*Piper nigrum* L. Family Piperaceae) cultivars for superior spice value (high essential oil, oleoresin and piperine content) and their *in vitro* propagation

by

R. M. Dharmadasa

The work described in this thesis was carried out by me under the supervision of Dr. Y.M.H.B. Yapabandara (Industrial Technology Institute) and Dr. (Mrs). P.L Hettiarachchi (University of Sri Jayawardanapura) and a report on this has not been submitted in whole or in part to any University for another degree.

02.12.2002

.....

Signature (R.M. Dharmadasa)

Date

We certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the University for the purpose of evaluation

02 - 12 - 2002

Date

MESanSke

Dr. Y.M.H.B. Yapabandara

02/12/2002

Date

P. J. Hut

Dr. (Mrs) P.L. Hettiarachchi

Screening existing black pepper (*Piper nigrum* L. Family Piperaceae) cultivars for superior spice value (high essential oil, oleoresin and piperine content) and their *in vitro* propagation

by

Rathnayake Mudiyanselage Dharmadasa

Thesis submitted to the University of Sri Jayawardanepura for the award of the degree of Master of Philosophy in Applied sciences on 2nd December 2002

KEY TO ABBREVIATIONS

AC	: Activated charcoal.
ANOVA	: Analysis of Variance
BA	: 6-Benzylaminopurine (N ⁶ Benzyladenine).
°C	: Degree of Centigrade
CRD	: Completely Randomized Design
DEA	: Department of Export Agriculture
GLC	: Gas Liquid Chromatography
GLM	: Generalized Linear Model
Ha	: Hectare
HPLC	: High Performance Liquid Chromatography
IAA	: 3-Indoleacetic acid.
IBA	: 3-Indolebutyric acid
Kn.	: Kinetin
MS	: Murasige and Skoog's (1962) medium
NAA	: 1-Naphtalene Acetic acid
PVP	: Polyvinylpyrelidone
SAS	: Statistical Analysis System
SDC	: Sodium diethyldithiocarbonate
2,4-D	: 2,4-Diclorophenoxy Acetic Acid.
2iP	: 2-Isopentenyl adenine

TABLE OF CONTENT

1.0 INTRODUCTION

1

2.0 LITE	RATUR	E REVIEW		5
2.1.	Physic	cal yield para	meters	5
2.2	Chem	ical Analysis		6
	2.2.1	Distillation ar	nd quantification of pepper oils	6
	2.2.2.	Parameters i	ndicating chemical quality of black	
		pepper (Pip	er nigrum L)	6
	2.2.3	Essential oil		7
	2.2.4	Composition	of pepper oil.	8
	2.2 .5	Non volatile	compounds	12
	2.2.6	Isolation and	l quantification of non-volatile	13
		compounds		
	2.2.7	Determinatio	n of piperine content of black pepper	14
2.3.	Plant '	Tissue Culture		16
	2.3.1	Botany of th	e Plant	16
	2.3.2	In vitro prop	agation of plants	16
	2.3.3	Methods of i	n vitro clonal propagation	18
		2.3.3.1 Rege	neration via somatic embryos	
		(Som	atic embryogenesis)	18
		2.3.3.2	Regeneration via adventitious	
			meristems (Organogenesis)	18
		2.3.3.3	Axillary bud proliferation	19
	2.3.4	Different cul	ture methods used in tissue culture	20
		2.3.4.1	Shoot tip culture	20
		2.3.4.2	Bud and nodal culture	20

	2.3.5	Stages in in vitro propagation	20
		2.3.5.1 Stage 0. Maintenance of mother plants	21
		2.3.5.2 Stage 1 Establishment of aseptic cultures	21
		2.3.5.2.1 Culture media	23
		2.3.5.2.2 Growth regulators	24
		2.3.5.2.3 Incubation conditions	25
		2.3.5.2.4 Polyphenol oxidation	25
		2.3.5.3 Stage II. Shoot multiplication	28
		2.3.5.3.1 Growth regulators	28
		2.3.5.3.2 Shoot multiplication of Piper species	29
		2.3.5.4 Stage III Rooting of in vitro regenerated pepper plants	30
		2.3.5.5 Acclimatization of in vitro propagated shoots	31
	2.3.6	Callus establishment of black pepper	33
3.0 N	IATER	IALS AND METHODS	35
3.1	Selec	tion of mother vines from different locations	35
3.2	Comp	parison of yield parameters of local cultivars with introductions	38
3.3	Deter	mination of moisture content and chemical analysis of	
	peppe	er berries	39
	3.3.1	Moisture content	39
		3.3.1.1 Toluene distillation method	39
		3.3.1.2 Moisture balance method	39
	3.3.2	Chemical characteristics of pepper samples collected	
		from different districts	40

	3.3.3	Comparison of	of chemical composition of essential oil	
		using Gas Lic	uid Chromatography (GLC).	40
	3.3.4	Comparison	of oleoresin content of selected mother	
		vines from d	ifferent pepper growing areas.	41
	3.3.5	Determinatio	n of piperine content by direct UV method	
		and High Per	formance Liquid Chromatography (HPLC)	42
		3.3.5.1	Preparation of standard piperine solution	42
		3.3.5.2	High Performance Liquid Chromatography	42
		3.3.5.3	Determination of piperine content by direct UV	
			Spectrophotometer method	43
3.4	In vitr	o propagation		44
	3.4.1.0	General Proced	ure	44
		3.4.1.1 Colle	ection and Maintenance of mother plants	44
		3.4.1.2 Stoc	k solutions and basal medium	44
		3.4.1.	3.1. Preparation of stock solutions of growth	
			regulators	45
		3.4.1.	3.2. Preparation of culture media	45
		3.4.1.	3.3. Explants preparation and sterilization	46
		3.4.1.	3.4. Building up of stock cultures for experiments	47
		3.4.1.4.	Culture incubation	47
		3.4.1.8	Experimental design and statistical analysis	47
	3421	Experimental F	tracedure	48

3.4.2.1 Comparison of contamination between explants	
of greenhouse and field grown mother plants	48
3.4.2.2 Comparison of shoot multiplication of nodal explants	
in MS medium supplemented with five different	
concentrations of BA.	48
3.4.2.3 Comparison of shoot multiplication of nodal explants	
in MS medium supplemented with five different	
concentrations of Kinetin (Kn).	49
3.4.2.4 Comparison of shoots multiplication of nodal explants in	
MS medium supplemented with five different	
concentrations of 2ip.	49
3.4.2.5 Comparison of shoot multiplication of black pepper in	
different BA levels (0, 1, 3.5, 5, 7.5, 10, 20, 30, 40, 50 mg/l).	50
3.4.2.6 Comparison of shoot multiplication of five different pepper cultivars in solid and liquid media	51
3.4.2.7 Comparison of shoot multiplication of black pepper nodal	
explants in different concentrations of BA (0, 1, 2.5, 3.5	
and 5 mg/l) and NAA (0, 0.1 and 0.2 mg/l)	52
3.4.2.8 Comparison of rooting of in vitro generated black pepper shoots	
in MS medium supplemented with Charcoal and IBA.	53
3.4.2.9 Acclimatisation of <i>in vitro</i> propagated plantlets	53
3.4.2.10 Callus establishment from leaf explants in MS medium	
supplemented with different concentrations of 2,4-D and	
BA in dark and light conditions.	54

3.4.2.1	1 Callu	s establishment from stem explants (internode) of	
	black	pepper in half strength MS medium supplemented	
	with	different concentrations of IAA and BA.	54
4.01	RESUL	TS	55
4.1 C	omparis	son of yield parameters of local cultivars with introductions	55
	4.1.1.	Moisture content	56
4.2	Chem	ical analysis	56
	4.2.1	Chemical characteristics of pepper samples collected	
		from different districts.	56
	4.2.2	Comparison of pepper oil content of samples collected	
		from different areas.	60
	4.2.3.	Comparison of chemical composition of essential oil	
		using Gas Liqiud Chromatography (GLC)	62
	4.2.4	Comparison of oleoresin content of selected mother vines	
		from different pepper growing areas.	69
	4.2.5	Determination of piperine content by direct UV method and High	
		Performance Liquid Chromatography (HPLC).	70
4.3 Pla	ant Tiss	ue culture	73
	4.3.1	Comparison of contamination between explants of greenhouse and	L
		field grown mother plants.	73
	4.3.2	Comparison of shoots multiplication of nodal explants in MS	
		medium supplemented with five different concentrations of BA	75
	4.3.3	Comparison of shoot multiplication of black pepper nodal explants	3
		in MS medium supplemented with 5 concentrations of Kn	
		and 3.5 mg/l BA.	78

	4.3.4	Comparison of shoots multiplication of nodal explants in MS medium	
		supplemented with 5 different concentrations of 2ip and 3.5 mg/l BA.	79
	4.3.5	Comparison of shoot multiplication of black pepper nodal explants	
		in MS medium supplemented with in different BA levels	
		(0, 1, 3.5, 5, 7.5, 10, 20, 30, 40, 50 mg/l).	81
	4.3.6	Comparison of shoot multiplication of five different pepper cultivars in solid and liquid media	85
	4.3.7 Co	omparison of shoot multiplication of black pepper nodal explants in	
		different concentrations of BA (0, 1, 2.5, 3.5 and 5 mg/l) and NAA	
		(0, 0.1 and 0.2 mg/l)	88
	4.3.8	Comparison of rooting of in vitro generated pepper shoots in MS medium	
		supplemented with charcoal and IBA.	91
	4.3.9	Acclimatization of in vitro propagated plantlets in soil.	97
	4.3.10	Callus establishment from leaf explants in MS medium supplemented	
		with different concentrations of 2,4-D and BA in dark and light	
		conditions	104
	4.3.11	Callus establishment from stem explants (internode) of black pepper	
		in half strength MS medium supplemented with different	
		concentration s of IAA and BA	107
5.0	DISCUSS	ION	110
	5.1	Physical properties	110
	5.2	chemical analysis	111
	5.3	Plant tissue culture	115
6.0	CONCLU	SIONS, SUGGESTIONS AND FUTURE RECOMMENDATIONS	123
7.0	REFERE	NCES	126
8.0	APPENDI	IX	134

LIST OF TABLES

Table 2. 1	Some volatile components present in black pepper oil	
	(Wrolted and Jenning, 1965)	9
Table 2.2	Composition of Sri Lankan black pepper oil as reported earlier	10
Table 2.3	Composition of pepper oil in some lines selected by DEA	
	(Samuel, 1984).	11
Table 2.4	Composition of black pepper oil reported by previous workers	12
Table 3.1	Identity, Location and districts of selected mother vines	35
Table 3.2	Preparation of stock solutions of growth regulators	45
Table 3.3	Names and the origin of the pepper cultivars used for experiments	51
Table 4.1.1	Summary of mean yield parameters of local pepper lines and	
	Introductions (Panniyur and Kuchin)	55
Table 4.2.1	Moisture content and chemical characteristics of pepper samples	
	selected from Kandy district.	57
Table 4.2.2	Moisture content and chemical characteristics of pepper samples	
	selected from Monaragala district.	57
Table 4.2.3	Moisture content and chemical characteristics of pepper samples selected	
	from Matale district.	58
Table 4.2.4	Moisture content and chemical characteristics of pepper samples	
	selected from Matara district.	58
Table 4.2.5	Chemical characteristics of pepper samples selected from Nuwaraeliya	
	district.	58
Table 4.2.6	Moisture content and chemical characteristics of pepper samples	
	selected from Gampaha district.	59
Table 4.2.7	Moisture content and chemical characteristics of pepper samples	
	selected from Department of Export Agriculture selections.	59
Table 4.2.8.	Moisture content and chemical characteristics of pepper introductions	
	(Pannivur and Kuchin) grown in different locations.	60

Table 4.2.9	Pepper oil content (Range and average value) of several pepper cultivars	
	growing in different districts.	61
Table 4.2.10	Chemical characteristics and locations of high oil content mother vines.	62
Table 4.2.11	Major compounds of pepper oil with averages and ranges	66
Table 4.2.12	Results of the GLC analysis of pepper oil	67
Table 4.2.13	Total Oleoresin content (%) in different pepper	
	cultivars / selections.	69
Table 4.2.14	Summary of the piperine content in different local pepper samples	
	and Introductions detected using direct UV and HPLC methods.	71
Table 4.2.15.	The average values of different black pepper cultivars with their	
	standard deviations	72
Table 4.3.1	Percentages of contaminated, dead and uncontaminated cultures	
	of field and greenhouse grown plants.	73
Table 4.3.2	Effect of different levels of BA on number of shoots (SHNM), elongation	
	of shoots (SHEL), number of leaves (LFNM) and overall growth	
	score (SCORE) six weeks after culture establishment.	76
Table 4.3.3	Effect of different Kn levels on number of shoots (SHNM), shoot	
	elongation (SHEL), number of leaves (LFNM) and overall growth score.	79
Table 4.3.4	Effect of different 2iP levels on number of shoots (SHNM), shoot length	
	(SHEL), number of leaves (LFNM) and overall growth score after	
	6 weeks.	80
Table 4.3.5	Number of shoots (SHNM), shoot elongation (SHEL), number of leaves	
	(LFNM) and score on overall growth of cultivars in different levels	
	of BA after 6 weeks.	83
Table 4.3.6	Number of shoots produced by 5 different cultivars cultured in	
	liquid and solid medium.	84
Table 4.3.7	Shoot elongation (cm) of 5 cultivars cultured in liquid and solid media.	85
Table 4.3.8	Number of leaves of 5 cultivars cultured in liquid and solid media.	86
Table 4.3.9	Growth score of 5 cultivars cultured in liquid and solid media	87

Table 4.3.10	Effect of different concentrations and combinations of BA and	
	NAA on number of shoots After 6 weeks.	89
Table 4.3.11	Combined effect of different concentrations of NAA and BA on shoot	
	Elongation (cm)	90
Table 4.3.12	Effect of different concentrations and combinations of NAA and BA on	
	number of emerging leaves	90
Table 4.3.13	Effect of different concentrations and combinations of BA and NAA on	
	overall growth score	91
Table 4.3.14	The effect of IBA with or without activated charcoal (AC) on number	
	of roots of black pepper after 6 weeks.	92
Table 4.3.15	The effect of IBA with or without activated charcoal (AC) on root	
	length (RTLG) of black pepper expressed as number of shoots	
	after 6 weeks.	93
Table 4.3.16	The effect of IBA with or without activated charcoal (AC) on number	
	of leaves of black pepper (number of leaves (LFNM) after 6 weeks).	93
Table 4.3.17	The effect of IBA and activated charcoal (AC) on number of shoots	
	(SHNM) of black pepper (expressed as number of shoots after 6 weeks)	94
Table 4.3.18	The effect of IBA with or without activated charcoal (AC)	
	on shoot elongation of black pepper after 6 weeks.	94
Table 4.3.19	The effect of IBA with or without activated charcoal (AC) on growth	
	score of black pepper after 6 weeks.	95
Table 4.3.20	. Survival percentage of pepper plants during acclimatization up to 8	
	weeks.	97
Table 4.3.21	Effect of IBA and activated charcoal on shoot number during	
	acclimatization of black pepper.	98
Table4.3.22	Effect of IBA and activated charcoal on shoot elongation (SHEL) on	
	acclimatization of Black pepper.	98
Table 4.3.23	Effect of IBA and activated charcoal on number of leaves produced	
	during acclimatization of Black pepper.	99

Table 4.3.24	Effect of IBA and activated charcoal on growth score	
	during acclimatization of Black pepper	99
Table 4.3.25	Growth performances of black pepper plants, which were rooted	
	in different IBA and charcoal levels after 8weeks of acclimatization	
	expressed as number of shoots (SHNM), shoot elongation (SHEL),	
	number of leaves (LFNM) and overall growth score (SCORE).	
	(Summary of Table 4.3.21 - 4.3.24)	100
Table 4.3.26	Percentage of callus formation different concentrations of BA and	
	2,4-D in continues light condition	105
Table 4.3.27	Effect of different concentrations of BA and 2,4-D in dark condition	106
Table 4.3.28.	Callus establishment of stem explants of black pepper in half	
	strength MS medium supplemented with different concentrations	

of IAA and BA.

108

x

LIST OF FIGURES

Figure: 2.1 Piperine (2, trans 4, trans) ($C_{17}H_{19}O_3N$)	14
Figure 4.2.1 Oil content of local and introduced cultivars	61
Figure 4.2.2. Percentage of six major components present in local selections	63
Figure 4.2.3. Percentage of six major components present in DEA selections	63
Figure 4.2.4. Percentage of six major components present in in Panniyur	64
Figure 4.2.5. Percentage of six major components present in Kuchin	64
Figure 4.2.6. Oleoresin content of different pepper cultivars/lines	70
Figure 4.2.7. Piperine content of different pepper cultivars/lines	71

LIST OF PLATES

Plate 4.3.1	Black pepper nodal explant established in MS medium	75
Plate 4.3.2	Shoot multiplication of nodal explants established in MS medium	
	supplemented with 5 concentrations of BA (left to right 0, 2.5, 3.5	
	and 5 mg/l BA.	77
Plate 4.3.3.	Growth of nodal explants established in MS medium supplemented	
	with 5 concentrations of 2ip (from left to right 0, 1, 2.5, 3.5, 5	
	and 3.5 mg/l BA).	80
Plate 4.3.4.	Shoot multiplication of nodal explants in MS medium supplemented	
	with 10 BA concentrations (from left to right 0, 1, 3.5, 5, 7.5, 10, 20, 30,	
	40 and 50 mg/l)	
	82	
Plate 4.3 5	Black pepper shoots growing in solid and liquid media (left to right	
	solid and liquid media)	87
Plate 4.3.6	Black pepper shoots showing better multiplication in liquid medium in	
	cultivar M4 after 6 weeks.	88
Plate 4.3.7	Overall growth performance of in vitro generated black pepper shoots in	
	MS medium supplemented with IBA and activated charcoal (from left	
	to right control, 1mg/l IBA, 1 mg/l IBA and 0.2% AC, AC only).	95
Plate 4.3.8	Black pepper shoots showing roots induced in MS medium containing	
	1mg/l IBA	96
Plate 4.3.9	In vitro regenerated black pepper plants acclimatized in a growth	
	Chamber.	101

Plate 4.3.10	Black pepper plants rooted in different IBA and AC levels after	
	transferring to potting mixture (coir: sand: compost 1:1:1) with	
	after 8 weeks acclimatization (left to right control, AC only,	
	IBA only and AC & IBA).	101
Plate 4.3.11	Plants rooted in IBA and AC with control (Left to right control and	
	0.2%AC +1mg/l IBA).	103
Plate 4.3.12	In vitro regenerated pepper plants growing in cement pots	
	containing soil (after 5 months).	103
Plate 4.3.13	Callus produced from leaf explants of black pepper in MS medium	
	supplemented 5 mg/l 2,4-D and 1mg/l BA with in dark conditions	
	after 4 weeks	107
Plate 4.3.14	Callus produced from stem explants of black pepper in half MS	
	medium supplemented with different IAA levels (left 22mg/l IAA	
	and right 2.2mg/l IAA in dark condition after 4 weeks.	108

ACKNOWLEDGEMENT

At the very out set, I wish to express my cordial thanks to my supervisor Dr. Y.M.H.B. Yapabandara, Senior Research Officer, Natural Product Development Group, Industrial Technology Institute for his valuable guidance, continuous supervision, consistent encouragement and constructive invaluable criticism throughout the project.

I convey my sincere gratitude to my internal supervisor Dr. (Mrs) P.L. Hettiarachchi, Senior Lecturer, Department of Botany, University of Sri Jayawardanapura, Nugegoda for her stimulant guidance, supervision and consistent encouragement throughout this project and invaluable suggestions and criticisms on the manuscript.

I would like to thank National Science Foundation for providing financial assistance to carryout this project without which this task could not have been completed successfully.

My sincere thanks are also due to Dr. Jayasiri Ranatunga, Common-wealth Scientist, and West Colombia Canada, who initiated, supervised and guided enabling me to carryout this project successfully.

My sincere thanks are also due to Dr. (Mrs). Laksmi Arambewela, Manager, Natural Product Development Group, for her encouragement, guidance and for providing me with necessary facilities to carryout this project successfully

I would like to thank Dr. (Mrs.) Nandani Ediriweera, Head, Agro and Food Technology Division for providing me with necessary facilities and her kind encouragement to carryout the project successfully.

xiv

I would like to thank Director, Industrial Technology Institute for allowing me to carryout this project in the institute.

My special thanks to Mr. K.R. Dayananda, Senior Research Officer, Natural Product Development Group for his valuable suggestions, and correction of my work during the project.

I would like to thank to Ms. Mihiri De Soyza for helping me to carryout the chemical analysis.

My special thanks are also due to all staff members of Natural Product Development Group for their continuous support through out this project.

It is pleasure to thank my colleagues Ms. Nalika Warusaperuma, Mr. Pathmasiri Ranasinghe who helped and encouraged me in various ways to complete my task successfully.

Last but not least I am greatly indebted to my wife Prasanthi Rathnayake for her moral and practical support and encouragement throughout the project work.

Screening existing black pepper *Piper nigrum* L. (Family Piperaceae) cultivars for superior spice value (high essential oil, oleoresin and piperine content) and their *in vitro* propagation R.M. Dharmadasa

ABSTRACT

Some selected local and introduced (Panniyur and Kuchin) black pepper, *Piper nigrum* L. cultivars from different pepper growing areas of the country were screened for physical (number of seeds per spike, length of spike, number of pinheads per spike and thousand seed weight) and chemical (oil content and composition, oleoresin content and piperine content) quality parameters in order to determine the cultivars with the best spice value. Subsequently the possibility of mass propagation of these desired cultivars using an *in vitro* techniques and their ability to get acclimatized under normal field conditions were tested with the view of commercializing the technique to supply pepper growers with economic cultivars.

The oil, oleoresin and piperine contents varied in both local and introduced cultivars. Among local cultivars the highest oil content (6.3%) from Handessa-1 (Kandy district), oleoresin (21.78%) from SMD NK (Monaragala district) and piperine (14.51%) from Naranwela (Kandy district) were obtained. Comparatively low content of oil, oleoresin and piperine were observed in introduced cultivars. Pepper oil was analyzed using GLC (Gas Liquid

Chromatography) and found that it is a mixture of about 100 different compounds. The most significant compounds identified were ∞ -pinene, β pinene, Limonene, Sabinene, ∞ -phelendrine and β -Caryophyllene. The piperine content of both local and introduced cultivars seems to be similar. However, piperine contents determined by HPLC (High Performance Liquid Chromatography) method were low when compared to the direct UV (Ultra Violet) method. Results of the chemical analysis revealed that spice value was high in local cultivars when compared to the introduced cultivars.

In vitro propagation of black pepper was severely hampered by contamination and browning. However, maintenance of mother plants in the greenhouse, by avoiding overhead watering and spraying systematic fungicide significantly reduced the contamination and browning. Browning of explants caused by a viscous jelly like exudation from the cut surface of the explants was considerably overcome by incorporation of PVP (Polyvinyl Pyrolidone) at the rate of 200 mg/l, initial culture incubation in low light and frequent transferring of explants to the fresh medium.

In vitro propagation protocol for black pepper was developed using nodal and shoot tip explants taken from greenhouse maintained mother plants. Nodal and shoot tip explants collected from actively growing pepper plants were successfully established in MS (Murasige and Skoog's 1962) medium supplemented with 2.5 mg/l BA (6-Benzylaminopurine) after sterilization with 0.1% HgCl₂ for 10 minutes in a low speed shaker.

xvii

Shoot proliferation was compared using MS medium supplemented with different growth regulators such as BA, Kinetin and 2ip (2-Isopentenyl adenine). BA was found superior over other two cytokinins tested. The suitable BA concentration was 3.5 mg/l. A higher shoot multiplication (6.57) was observed in liquid medium than in solid medium (3.99). About 6-7 fold shoot multiplication was achieved in liquid medium within six weeks. Higher shoot multiplication was observed in some local pepper cultivars i.e. GK 49 and M4 than in introduced cultivars.

Rooting of *in vitro* propagated shoots from nodal and shoot explants in MS medium supplemented with 0.2% activated charcoal (AC) both with and without IBA (3-Indolebutyric acid) were tested separately. The highest number of roots and early rooting were observed in medium with 1 mg/l IBA and charcoal. The rooted plantlets were transferred to pots filled with 1:1:1 coir: compost: sand and the level of successful acclimatization obtained was more than 80%. The acclimatized pepper plants were transferred to normal soil and grown in the garden successfully.

Callus induction from leaf and stem explants was studied in medium containing auxin 2,4-D (2,4-Diclorophenoxy Acetic Acid) or IAA (3-Indoleacetic acid) supplemented with or without BA. Root formation was observed in some of the calli after long period of incubation but shoot regeneration from these calli was unsuccessful.

xviii