To my loving parents

Declaration of the candidate

The work described in this thesis was carried out by me under the supervision of Dr. P.M. Jayaweera and a report on this has not been submitted to any University for another degree.

07.08.2002 Date

S.S.Palayangoda

Declaration of the supervisor

I certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the university for the purpose of evaluation.

Date

Dr. P.M. Jay eera Dept. of Chemistry University of Sri Jayawardenepura Gangodawila - Nugegoda. ERI BANKA

SPECTROSCOPIC AND ELECTROCHEMICAL STUDIES OF IRON(II) AND COBALT(II) COMPLEXES; POTENTIAL DYE MATERIALS FOR NANO-POROUS PHOTOVOLTAIC DEVICES

By

SUJEEWA SENARATH PALAYANGODA [B.Sc.(Chemistry) sp., USJ, Sri Lanka]

Thesis submitted in partial fulfillment of the requirements for the Degree of Master of

Philosophy in Chemistry of the Faculty of Applied Science, University of Sri

Jayewardenepura, Nugegoda, Sri Lanka.

TABLE OF CONTENTS

Page

LIST OF CONTENTS	i
LIST OF TABLES	vi
LIST OF FIGURES	vii
ACKNOWLEDGEMENTS	x
ABSTRACT	xi

INTRODUCTION

CHAPTER -1

۱.	Theore	etical Background	- 1
1.1	Solar o	cells	1
1.2	Energy	/ band gap of solids	3
1.3	Fermi	level	5
1.4	Charge	e carriers	7
	1.4.1	Photo-excitation	7
	1.4.2	Thermal excitation	7
	1.4.3	Doping	7
1.5	Condu	ctivity of a semiconductor	8
	1.5.1	Electronic conductivity	8
	1.5.2	Ionic conductivity	8
1.6	Dye se	ensitization	9
	1.6.1	Kinetics of the semiconductor electrode/electrolyte interface	11

1.7	Efficient	cy of a Photo Electrochemical Cell	14
	1.7.1	Drawbacks of the efficiency of the Photo Electrochemical Cell	16
1.8	Propertie	es of electronically excited states of transition metal complexes	16
	1.8.1	Criteria for classification of the excited state	17
	1.8.1.1	Metal centered (MC) excited states	17
	1.8.1.2	Metal-to-Ligand Charge Transfer (MLCT) states	18
	1.8.1.3	Ligand Centered (LC) excited states	18
	1.8.2	Transition metal complexes as dye material for solar cells	- 19
		(Photovoltaic cells)	
1.9	Fate of a	dye molecule in a Photo Electrochemical Cell	21
1.10	Acid-bas	se switching of alizarin and quinalizarin sensitized nano-porous	22
	Photovoltaic devices		
1.11	Cyclic Voltammetry		23
	1.11.1	Data interpretation	23
1.12	2 Computational Chemistry		26
	1.12.1	HyperChem software package	26
	1.12.2	Building and displaying molecules	27
	1.12.3	Optimizing the structure of molecules	27
	1.12.4	Molecular Mechanics (MM+)	27
	1.12.5	Semi-empirical methods of quantum chemistry	28
	1.12.5.1	General background	28
	1.12.5.2	Molecular geometry	28
	1.12.5.3	Calculating electronic potential energy	29
	1.12.5.4	Features of semi-empirical method	29

1.12.5.5 Range of semi-empirical methods	29
1.12.5.6 ZINDO/1 (Zerner's Intermediate Neglect of Differential Overlap)	30
method	
1.12.5.7 Selecting options for ZINDO/1 method	30
1.12.5.8 Single point calculation	32
1.12.5.9 Contour plots	32
1.12.5.10 Total electron density calculations (charge density)	32

CHAPTER –2

Experimental

2.1	Chem	icals and Solvents	33
2.2	Prepar	ation methods	33
	2.2.1	Preparation of conducting glass plates (CTO) for applying TiO_2 layer	33
	2.2.2	Deposition of TiO ₂ on conducting glass plates	33
	2.2.3	Preparation of $Fe(II)(C_2O_4)_2$ bromopyrogallol red complex	34
	2.2.4	Preparation of $[Co(1, 10-Phen)_2]$ Cl ₂ complex	34
	2.2.5	Preparation of Co(1,10-Phen) ₂ bromopyrogallol red and	34
		Co(1,10-Phen) ₂ catechol violet complexes	
	2.2.6	Preparation of I/I ₃ ⁻ electrolyte	35
	2.2.7	Coating procedure of dye on semiconductor films	35
	2.2.8	Preparation of acidic and basic ethanolic solutions	35
	2.2.9	Measuring the photocurrent and photovoltage values of acidic medium	35
		and basic medium dye coated photovoltaic cells	

2.3	Instruments and techniques		36
	2.3.1	Absorption and Reflectance spectra	36
	2.3.2	Photocurrent action spectra	36
	2.3.3	Emission spectra	38
	2.3.4	Cyclic voltammograms	38
	2.3.5	Solar simulator	40
	2.3.6	HyperChem quantum mechanical calculations	40

CHAPTER-3

Results and Discussion

3.1	Preparation of a dye sensitized photovoltaic cell	41
3.2	Preparation of a metal complexes	46
3.3	Comparison of spectroscopic properties of Fe(II)(C2O4)2bromopyrogallol red	46
	complex with bromopyrogallol red free ligand	
3.4	Spectroscopic and photovoltaic properties of Co(II)(1,10-phen) ₂	55
	bromopyrogallol red and Co(II)(1,10-phen) ₂ catechol violet complexes	
3.5	Emission and absorption properties of Co(II)(1,10-phen) ₂ catechol violet and	65
	catechol violet ligand in methanolic solution	
3.6	Acid-base switching of alizarin and quinalizarin sensitized nano-porous	68
	photovoltaic devices	

References

Conclusion

List of publications

72 76

77

LIST OF TABLES

Table 2.1Average photocurrent, voltage and cell efficiency values for two dye52materials [iron(II)(C_2O_4)₂ bromopyrogallol red andbromopyrogallol red free ligand

Page

- Table 2.2Heat of formation values of cobalt(II) (1,10-phen)2bromopyrogallol56red and cobalt(II) (1,10-phen)2catechol violet56
- Table 2.3Average photocurrent, voltage and cell efficiency values for two dye62materials [cobalt(II) (1,10-phen)2bromopyrogallol red and[cobalt(II) (1,10-phen)2catechol violet]

LIST OF FIGURES

	Page
Figure 1.1 Classification of solids and semiconductors	4
Figure 1.2 Charge distribution of semiconductor after ionization	6
Figure 1.3 Mechanism of dye sensitization	10
Figure 1.4 Ruthenium polypyridyl type molecule	12
Figure 1.5 The charge separation at the interface of particulate film and the	13
electrolyte	
Figure 1.6 The photocurrent conversion efficiency curve	15
Figure 1.7 Mechanisms within the cell	20
Figure 2.1 Schematic layout of action spectra set up	37
Figure 2.2 Schematic layout of cyclicovoltammetry set-up	39
Figure 3.1 The mechanism of surface complexation of dye with TiO_2	42
Figure 3.2 Triphenylmethane type molecules	45
Figure 3.3 $iron(II)(C_2O_4)_2$ bromopyrogallol red complex	47
Figure 3.4 Absorption spectra of $iron(II)(C_2O_4)_2$ bromopyrogallol	48
red and bromopyrogallol red in methanol	
Figure 3.5 Cyclic voltammograms of (a) iron(11)(C ₂ O ₄) ₂ bromopyrogallol	50
red and bromopyrogallol red in aqueous solution containing 1×10^{-3}	
M KNO ₃ as the supporting electrolyte.	
Figure 3.6 Photocurrent action spectra for nanocrystalline TiO ₂ films	51
coated with $iron(II)(C_2O_4)_2$ bromopyrogallol red and	
bromopyrogallol red	

Figure 3.7	Photocurrent – voltage curves for iron(II)(C_2O_4) ₂	53
	bromopyrogallol red complex and bromopyrogallol red ligand	
Figure 3.8	The time development of the photocurrent when cells were	54
	illuminated with 750 W/m ² solar simulator	
Figure 3.9	Most probable structures of cobalt(II)(1,10-phen) ₂ bromopyrogallol	59
	red and cobalt(II)(1,10-phen) ₂ catechol violet molecules.	
Figure 3.10	Absorption spectra of cobalt(II)(1,10-phen) ₂ bromopyrogallol	60
	red and cobalt(II)(1,10-phen) ₂ catechol violet in ethanol.	
Figure 3.1	Reflectance spectra (a) cobalt(II)(1,10-phen) ₂ bromopyrogalol	61
	red and (b) $cobalt(II)(1,10-phen)_2 catechol violet complexes on$	
	TiO ₂ surface	
Figure 3.12	2 Action spectra cobalt(II)(1,10-phen) ₂ bromopyrogallol	63
	red and cobalt(II)(1,10-phen) ₂ catechol violet complexes on	
	TiO ₂ surface.	
Figure 3.12	3 Photocurrent-voltage curves for cobalt(II) $(1,10-phen)_2$	64
	bromopyrogallol red and cobalt(II)(1,10-phen) ₂ catechol violet.	
Figure 3.14	4 Emission spectra of cobalt(II)(1,10-phen) ₂ catechol violet and	66
	catechol violet free ligand.	
Figure 3.15	5 Energy level diagram of cobalt(II)(1,10-phen) ₂ catechol violet	67
	complex.	
Figure 3.10	6 Molecular structures of alizarin (1,2-dihydroxyanthroquinone) and	68
	quinalizarin (1,2,5,8-tetrahydroxyanthroquinone)	

viii

Figure 3.17 Acid-base effect on observed photocurrent and photovoltage responses of alizarin and quinalizarin coated photocell

Figure 3.18 Contour plots of HOMO, LUMO of protonated and deprotonated 71

70

.

forms of alizarin and quinalizarin

ACKNOWLEDGEMENTS

I would like to express my sincerest thanks to my supervisor, Dr. P.P.M. Jayaweera, dept. of Chemistry, University of Sri Jayewardenepura for his expert supervision, helpful advice and constant encouragement during the course of this research work.

My thanks are due to Prof. K. Tennakone and Dr. R. Senadeera, Institute of Fundamental Studies, Kandy for their support. I would also like to thank technical staff at the Department of Chemistry, University of Sri Jayewardenepura and Institute of Fundamental Studies, Kandy, Sri Lanka.

Special thanks go to Prof. A.P. De Silva, School of Chemistry, Queens University of Belfast and Dr. Daya Barlo, Department of Physics, University of Colombo for their kind help to get Elemental Analysis data and Mass Spectral data respectively.

I would also like to thank colleagues in the Physical Chemistry research laboratory, Department of Chemistry, University of Sri Jayewardenepura, Mr. R.G.C.R. Gamage, Miss. P.I. Godakumbura and Mr. C.N. Weeraman, and Mr. P.V.V. Jayaweera, Photochemistry laboratory, I.F.S. for their support and friendship over the last two years.

Finally, the University of Sri Jayewardenepura and National Science Foundation, Sri Lanka are greatly acknowledged for all the support and financial assistance (Grant No. RG/98/C/05).

Х

ABSTRACT

Metallochromic triphenylmethane type dyes (bromopyrogallol red and catechol violet) have attracted attention of many scientists due to their potential ability to chelate with a number of transition metal centers. The dye materials belonging to this class is capable of producing high photocurrents and photovoltages when used as sensitizers in nano-porous TiO₂ photovoltaic cells. However, slow photo-degradation of dye molecules and low photocurrent conversion efficiencies have been the major problem.

Complexation of a triphenylmethane ligand with a transition metal center shows enhanced photovoltaic properties when compared with the photovoltaic cells coated by free triphenylmethane ligand only. Electrochemical and absorption spectroscopic data suggest that the nature of the lowest electronic transition of such a complex as a π^* (ligand) \leftarrow d π (metal), metal to ligand charge transfer transition. Photovoltaic cells coated with these transition metal complexes show higher stability for photo-degradation and incident photocurrent conversion efficiencies with a UV radiation blocking filter.

When catechol violet is complexed with $Co^{2+}(1,10-phen)_2$ moiety, it shows emission as well. Experimental and theoretical data suggest that the emission of this complex occurs from an upper ligand centered state and not from a low lying MLCT state.

1,2-dihydroxyanthraquinone or 1,2,5,8-tetrahydroxyanthraquinone can be used as sensitizing dye material in nano-porous solar cells, not only they produce fairly high photocurrent and photovoltage, when exposed to light, but also those properties show high sensitivity to the protonation and deprotonation of the 2 hydroxy group of the ligand when the pH value of the solvent is changed. Semi-empirical computational studies have shown that fine tuning of HOMO-LUMO orbitals are responsible for the sensitivity.

xi