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A BS1'RACT 

Metal lachromic triphenylmethane type dyes (bromopvrogallol red and caechol 

violet) have attracted attention ol many scientists due to their potential ability to chelate 

with a iumber of transition metal centers. The dye materials belonging to this class is 

capable of producing high phoocurrcnts and photovoltages when used as sensitizers in 

liallo-porous I ( ): photo\ oltaic cells. I lo\\ e' ci. slow photo-degradation of dye molecules 

and low photocurrcnt conversion efficiencies have been the major problem. 

Complexation of a triphenylmethane ligand with a transition metal center shows 

enhanced photovollaic properties when compared with the photovoltaic cells coated by 

lice iriphcnvlmethane ligand only. Electrochemical and absorption spectroscopic data 

suggest that the nature of the lowest electronic transition of such a complex as a it (ilgand) 

*— d ii 	metal to ligand charge transfer transition. Photovoltaic cells coated with 

these transition metal complexes show higher stability for photo-degradation and 

incident photocurrent conversion efficiencies with a UV radiation blocking filter. 

When catechol violet is complexed with Co2 ( I .1 O-phen)2  moiety, it shows 

emission as well. Experimental and theoretical data suggest that the emission of this 

complex occurs from an upper ligand centered state and not from a low lying MLCT 

state 

1 ,2-d i hydroxyanthraq ul none or I ,2,5 ,8-tetrahydroxyanthraqui none can be used as 

sensiuzinu dye material in nano-porous solar cells, not only they produce fairly high 

photocurreni and photovoltage, when exposed to light, but also those properties show 

high scnsi ii vi t\ to the protoflalion and deprotonat ion of the 2 hydro.xy group of the ligand 

when the pl I value of the solvent is changed. Semi-empirical computational studies have 

o\ 	t 	e t i 	of I IOMO-E U Mo orbitals are responsible for the sensitivitys 	 ng  
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