The work described in this thesis was carried out by me under the supervision of Dr. R. S. Wilson Wijerathnam, Manager Post harvest Technology Group, Industrial Technology Institute, and Professor A. Bamunuaarachchi, Professor of Applied Chemistry and Coordinator Food Science and Technology Programmes, University of Sri Jayawardenapura.

Hayawichreau F.M.E.Jayawickreme





We certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the University for the purpose of evaluation.

Mar

Dr.R.S.Wilson Wijerathnam, Manager, Postharvest Technology Group, Industrial Technology Institute, 363, Bauddhaloka Mawatha, Colombo 7. Srilanka

Prof. A.Bamunuaarachi, Professor of Applied Chemistry and Coordinator/Food Science & Technology Programmes, University of Sri Jayawardenapura, Nugegoda, Srilanka

# STUDIES ON RIPENING PROCEDURES FOR PERISHABLE COMMODITIES INTENDED FOR THE DOMESTIC MARKET IN SRI LANKA

By

#### FENELLA .M. E JAYAWICKREME (B.Sc)

Thesis submitted to the University of Sri Jayawardenepura for the award of

the degree of Master of Philosophy in Food Science and Technology on

10<sup>th</sup> May 2002

## AFFECTIONATELY DEDICATED TO

# My Husband Eshan

and

# My Son Avantha

## TABLE OF CONTENTS

| List of Contents                       | i     |
|----------------------------------------|-------|
| List of Tables                         | xi    |
| List of Figures                        | xiv   |
| List of Plates                         | xxi   |
| List of Appendices                     | xxii  |
| List of presentations and publications | xxiii |
| Acknowledgements                       | xxiv  |
| Abstract                               | XXV   |

| Chapter   | 1 Introduction                                      | 01 |
|-----------|-----------------------------------------------------|----|
| Chapter   | 2 Literature Survey                                 | 04 |
| 2.1. Ripe | ning of Fruits                                      |    |
|           | 2.1.1. Introduction                                 | 04 |
|           | 2.1.2. Respiration                                  | 05 |
|           | 2.1 3 Activity of Ethylene                          | 08 |
|           | 2.1.4 Influence of Other Compounds on the Receptors | 17 |
|           | 2.1.5 Ethylene Releasing Compounds                  | 18 |

| 2.1.6. Hormonal Regulation of Fruit Ripening          | 19 |
|-------------------------------------------------------|----|
| 2.1.7 Enzyme Regulation and its Effects on Fruit      | 20 |
| 2.1.8. Conventional Methods of Ripening               | 23 |
| 2.1.9. Visible Radiations and Photosynthetic Pigments | 25 |
| 2.1.10. Pigments in Fruits                            | 28 |

#### 2.2 Banana

|        | 2.2.1. Introduction                               | 30 |
|--------|---------------------------------------------------|----|
|        | 2.2.2. Fruit Development                          | 30 |
|        | 2.2.3. Harvest Maturity                           | 31 |
|        | 2.2.4. Ethylene Production                        | 33 |
|        | 2.2.5. Colour Changes                             | 33 |
|        | 2.2.6. Textural Changes                           | 34 |
|        | 2.2.7. Flavour                                    | 35 |
|        | 2.2.8. Moisture Loss                              | 35 |
|        | 2.2.9. Changes in Acidity                         | 35 |
|        | 2.2.10. Changes in Carbohydrate Content           | 36 |
| 2.3 Pa | apaya                                             |    |
|        | 2.3.1. Introduction                               | 37 |
|        | 2.3.2. Cultivars in Sri Lanka                     | 37 |
|        | 2.3.3. Marketing Sequence and Post Harvest Losses | 38 |
|        | 2.3.4. Harvest Maturity                           | 39 |
|        | 2.3.5. Ripening Pattern of Papaya                 | 39 |

ii

| 2.3.6. Ethylene Production     |                     | 40 |
|--------------------------------|---------------------|----|
| 2.3.7. Colour Development and  | l Pigments          | 40 |
| 2.3.8. Flavour Development     |                     | 41 |
| 2.3.9. Textural Changes        |                     | 42 |
| 2.3.10. Moisture Loss          |                     | 42 |
| 2.3.11. Carbohydrates          |                     | 42 |
| 2.3.12. Acidity                |                     | 43 |
| 2.4 Mango                      |                     |    |
| 2.4.1. Introduction            |                     | 44 |
| 2.4.2. Harvest Maturity        |                     | 44 |
| 2.4.3. Marketing Sequence and  | Losses in Sri Lanka | 47 |
| 2.4.4. Ripening Pattern of Man | go                  | 48 |
| 2.4.5. Ethylene Production     |                     | 48 |
| 2.4.6. Pigments and Colour De  | velopment           | 49 |
| 2.4.7. Flavour Development     |                     | 50 |
| 2.4.8. Textural Changes        |                     | 50 |
| 2.4.9. Moisture Loss           |                     | 50 |
| 2.4.10. Carbohydrate Sugars an | nd Acids            | 51 |
| 2.4.11. Organic Acids          |                     | 51 |
| 2.5 Tomato                     |                     |    |
| 2.5.1. Introduction            |                     | 52 |
| 2.5.2. Marketing Sequence and  | Losses in Sri Lanka | 52 |
| 2.5.3. Pigments in Tomato      |                     | 53 |

| 2.5.4. Effect of Postharvest storage                             | 53 |
|------------------------------------------------------------------|----|
| 2.5.5. Biosynthetic pathway of pigments                          | 54 |
| 2.5.6. Moisture Content                                          | 55 |
| 2.5.7. Organic Acids                                             | 55 |
| 2.5.8. Carbohydrates                                             | 56 |
| 2.5.9. Volatile Components                                       | 57 |
| 2.5.10. Phenolic Compounds                                       | 57 |
|                                                                  |    |
| Chapter 3 – Scope of thesis                                      | 58 |
| Chapter 4 Materials and Methods                                  |    |
| Experiments with Banana                                          |    |
| 4.1 Influence of Ethylene Gas on Ripening of Banana              | 60 |
| <b>4.2</b> Influence of 2Chloroethyl Phosphonic (ethrel) acid on | 64 |
| Ripening Attributes of Banana.                                   |    |
| 4.3 Comparative Effects of Selected Ripening Agents on           | 67 |
| Physico-chemical and organoleptic Characteristics of banana.     |    |
| <b>4.4</b> Influence of Temperature on Ripening of Banana        | 68 |
| 4.5 Minimum Threshold Time to Ripen Banana                       | 69 |

### Experiments with Papaya

| 4.6          | Influence of Ethylene Gas on Ripening of Papaya              | 71 |
|--------------|--------------------------------------------------------------|----|
| 4.7          | Influence of 2Chloroethyl Phosphonic (ethrel) acid on        | 72 |
|              | Ripening Attributes of Papaya (variety Rathna)               |    |
| <b>4.8</b> . | Influence of 2Chloroethyl Phosphonic (ethrel) acid on Colour | 73 |
|              | development of Papaya (mixed varieties)                      |    |
| 4.9          | Comparative Effects of Selected Ripening Agents on physico-  | 75 |
|              | chemical and organoleptic Characteristics of Papaya.         |    |
| 4.10         | Influence of Temperature on Ripening of Papaya               | 76 |
|              |                                                              |    |
| Experime     | ents with Mango                                              |    |
| 4.11         | Influence of Ethylene Gas on Ripening of Mango               | 78 |
| 4.12         | Influence of 2Chloroethyl Phosphonic (ethrel) acid on        | 79 |
|              | Ripening Attributes of Mango                                 |    |
| 4.13         | Comparative Effects of Selected Ripening Agents on mango     | 80 |
| 4.14         | Influence of Temperature on Ripening of Mango                | 81 |

| 4.15     | Study of Physico-chemical Parameters of Mango<br>During Development (7 <sup>th</sup> to 14 <sup>th</sup> week)       | 82 |
|----------|----------------------------------------------------------------------------------------------------------------------|----|
| 4.16     | Influence of the Maturity Stage on the Quality of Mango Exposed to Ethylene.                                         | 84 |
| Experime | ents with Tomato                                                                                                     |    |
| 4.17     | Influence of Ethylene Gas on Ripening of Tomato                                                                      | 85 |
| 4.18     | Influence of 2Chloroethyl Phosphonic (ethrel) acid                                                                   | 87 |
|          | on Ripening Attributes of Tomato                                                                                     |    |
| 4.19     | Comparative Effects of Selected Ripening Agents<br>on physico-chemical and Organoleptic Characteristics<br>of Tomato | 88 |
| 4.20     | Influence of Temperature on Ripening of Tomato                                                                       | 90 |
| 4.21     | Development of Red Colour in Harvested Tomato<br>via Light Treatment at Ambient Temperature.                         | 91 |

| 4.2         | 22.   | Development of Red Colour in Harvested Tomato<br>via Light Treatment at Low Temperature                               | 92  |
|-------------|-------|-----------------------------------------------------------------------------------------------------------------------|-----|
| 4.2         | 23. I | Effect of Temperature and Time on Storage of Tomato                                                                   | 93  |
| 4.2         | 24    | Influence of Ethrel and Temperature on Ripening of Stored Tomato                                                      | 95  |
| Chapter 5 H | Resu  | llts                                                                                                                  |     |
| Exper       | ime   | nts with Banana                                                                                                       |     |
|             | 5.1   | Influence of Ethylene Gas on Ripening of Banana                                                                       | 97  |
|             | 5.2   | Influence of 2Chloroethyl Phosphonic (ethrel) acid on<br>Ripening Attributes of Banana.                               | 98  |
|             | 5.3   | Comparative Effects of Selected Ripening Agents on<br>Physico-chemical and organoleptic Characteristics<br>of banana. | 102 |
| 4           | 5.4   | Influence of Temperature on Ripening of Banana                                                                        | 105 |
| 4           | 5.5   | Minimum Threshold Time to Ripen Banana                                                                                | 106 |

### Experiments with Papaya

| 5.6    | Influence of Ethylene Gas on Ripening of Papaya                                                            | 110 |
|--------|------------------------------------------------------------------------------------------------------------|-----|
| 5.7    | 7. Influence of 2Chloroethyl Phosphonic (ethrel) acid on<br>Ripening Attributes of Papaya (variety Rathna) | 114 |
| 5.8    | . Influence of 2Chloroethyl Phosphonic (ethrel) acid on Colour<br>Development of Papaya (mixed varieties)  | 116 |
| 5.9    | Comparative Effects of Selected Ripening Agents<br>on physico-chemical and organoleptic characters         | 117 |
| 5.1    | <b>0</b> . Influence of Temperature on Ripening of Papaya                                                  | 120 |
| Experi | ments with Mango:                                                                                          |     |
| 5.     | 11 Influence of Ethylene Gas on Ripening of Mango                                                          | 124 |
| 5.     | 12 Influence of 2Chloroethyl Phosphonic (ethrel) acid on<br>Ripening Attributes of Mango                   | 127 |
| 5.1    | 3 Comparative Effects of Selected Ripening Agents on physico-chemical and organoleptic characters          | 131 |
| 5.1    | 4 Influence of Temperature on Ripening of Mango                                                            | 135 |

| 5.15     | Study of Physico-chemical Parameters of Mango<br>During Development (7 <sup>th</sup> to 14 <sup>th</sup> week) | 136 |
|----------|----------------------------------------------------------------------------------------------------------------|-----|
| 5.16     | Influence of the Maturity Stage on the Quality of Mango Exposed to Ethylene.                                   | 139 |
| Experime | ents with Tomato                                                                                               |     |
| 5.17     | Influence of Ethylene Gas on Ripening of Tomato                                                                | 143 |
| 5.18     | Influence of 2Chloroethyl Phosphonic (ethrel) acid                                                             | 144 |
|          | on Ripening Attributes of Tomato                                                                               |     |
| 5.19     | Comparative Effects of Selected Ripening Agents<br>on physico-chemical and Organoleptic Characters             | 145 |
| 5.20     | Influence of Temperature on Ripening of Tomato                                                                 | 146 |
| 5.21     | Development of Red Colour in Harvested Tomato via Light Treatment at Ambient Temperature.                      | 150 |
| 5.22     | Development of Red Colour in Harvested Tomato<br>via Light Treatment at Low Temperature                        | 155 |

| 5.        | 23 Effect of Temperature and Time on Storage of Tomato               | 156 |
|-----------|----------------------------------------------------------------------|-----|
| 5.        | .24 Influence of Ethrel and Temperature on Ripening of Stored Tomato | 161 |
| Chapter 6 | Discussion                                                           | 168 |
| Chapter 7 | Conclusion                                                           | 196 |
|           | Recommendations for banana                                           | 198 |
|           | Recommendations for papaya                                           | 199 |
|           | Recommendations for mango                                            | 200 |
|           | Recommendations for tomato                                           | 201 |
|           | <b>Recommendations for Further Study</b>                             | 202 |
|           | List of References                                                   | 203 |
|           | Institutional Publications                                           | 229 |
|           | Web pages                                                            | 230 |
|           | List of Abbreviations                                                | 231 |
|           | Appendices                                                           | 233 |

#### x

## LIST OF TABLES

### Literature Survey:

.

| Table I  | Papaya losses at collection centers and the wholesale markets                            | 38  |
|----------|------------------------------------------------------------------------------------------|-----|
| Table II | Postharvest loses in mango at key stages of marketing                                    | 48  |
| Results: |                                                                                          |     |
| Table 1  | Influence of temperature on physico-chemical parameters of papaya.                       | 120 |
| Table 2  | Effect of temperature on physico-chemical parameters of mango                            | 135 |
| Table 3  | Effect of ethylene concentration on physico-chemical parameters of mango                 | 135 |
| Table 4  | Effect of ethylene on physico-chemical parameters of tomato                              | 143 |
| Table 5  | Effect of ethrel on physico-chemical parameters                                          | 144 |
| Table 6  | Effect of ripening agents on physico-chemical parameters                                 | 145 |
| Table 7  | Influence of temperature in relation to<br>Physico-chemical parameters of tomato         | 149 |
| Table 8  | Influence of ethrel concentration in relation to<br>Physic-chemical parameters of tomato | 149 |

| Table 9  | Effect of light quality in relation to physico-chemical parameters of tomato harvested at three maturity stages                                                                                             | 150 |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Table 10 | Effect of maturity in relation to physico-<br>chemical parameters of light treated tomatoes.                                                                                                                | 151 |
| Table 11 | Effect of maturity in relation to LCH colour values of tomato exposed to light treatments.                                                                                                                  | 155 |
| Table 12 | Effect of the quality of light in relation to LCH values of tomato                                                                                                                                          | 156 |
| Table13  | Effect of maturity in relation to physico chemical attributes of tomato stored at $(12 \pm 2^{\circ})$ C for 4 weeks.                                                                                       | 160 |
| Table 14 | Effect of storage time in relation to physico - chemical attributes of tomato stored at $(12 \pm 2^{\circ})$ C for 4 weeks.                                                                                 | 160 |
| Table 15 | Effect of maturity on physico-chemical properties of tomato<br>stored for 2 weeks at $12 \pm 2^{\circ}$ C and exposed to ethrel at two<br>temperatures ( $22\pm 2^{\circ}$ C and $29\pm 2^{\circ}$ C).      | 161 |
| Table 16 | Effect of ethrel treatment in relation to physico-chemical properties of stored for 2 weeks at $12 \pm 2^{\circ}C$ and exposed to ethrel at two temperatures ( $22\pm 2^{\circ}C$ and $29\pm 2^{\circ}C$ ). | 162 |
| Table 17 | Effect of temperature on physico-chemical properties of tomato<br>stored for 2 weeks at $12 \pm 2^{\circ}$ C and exposed to ethrel at two<br>temperatures ( $22\pm2^{\circ}$ C and $29\pm2^{\circ}$ C)      | 162 |

1. Con 1. Con 1. Con

To a line

| Table 18 | Organoleptic properties of tomato stored for 2 weeks at $12 \pm 2^{\circ}C$ | 164 |
|----------|-----------------------------------------------------------------------------|-----|
|          | exposed to ethrel at two temperatures (22±2°C and 29±2°C)                   |     |
| Table 19 | Effect of ethrel treatment (irrespective of temperature) on                 | 165 |
|          | Physico chemical properties of mature green tomato                          |     |
|          | stored for 4 weeks at $12\pm 2^{\circ}C$ and exposed to ethrel              |     |
|          | and NaOH at two temperatures ( $22\pm 2^{\circ}C$ and $29\pm 2^{\circ}C$ )  |     |
| Table 20 | Effect of temperature (irrespective of ethrel treatment) on                 | 165 |
|          | Physico chemical properties of mature green tomato                          |     |
|          | stored for 4 weeks at $12\pm 2^{\circ}C$ and exposed to ethrel              |     |
|          | and NaOH at two temperatures ( $22\pm 2^{\circ}C$ and $29\pm 2^{\circ}C$ )  |     |
| Table 21 | Organoleptic properties of mature green tomato stored for                   | 166 |
|          | 4 weeks at $12\pm 2^{\circ}$ C and exposed to ethrel and NaOH at            |     |
|          | two temperatures ( $22\pm 2^{\circ}C$ and $29\pm 2^{\circ}C$ )              |     |

#### LIST OF FIGURES

#### Literature Survey:

| Figure I   | Growth, respiration and ethylene production patterns of<br>climacteric and non-climacteric plant organs | 06 |
|------------|---------------------------------------------------------------------------------------------------------|----|
| Figure II  | Chain of actions initiated by ethylene                                                                  | 09 |
| Figure III | Pathway of ethylene biosynthesis                                                                        | 11 |
| Figure IV  | Mechanism of ethylene action                                                                            | 16 |
| Figure V   | Chemical configuration of phytochrome chromophore                                                       | 26 |
| Figure VI  | Structures of $\beta$ Carotene and Lycopene                                                             | 28 |
| Figure VII | Possible biosynthetic pathway of pigments                                                               | 55 |
| Results :  |                                                                                                         |    |
| Figure 1   | Effect of ethylene gas on TSS and TSS: acid ratio of banana                                             | 97 |
| Figure 2   | Effect of ethylene concentration on titratable acidity and firmness of banana                           | 98 |
| Figure 3   | Effect of Ethrel concentration on firmness and titratable acidity of banana                             | 99 |

| Figure 4  | Effect of Ethrel concentration on LCH colour values of banana          | 99  |
|-----------|------------------------------------------------------------------------|-----|
| Figure 5  | Effect of Ethrel concentration on ascorbic acid content of banana      | 100 |
| Figure 6  | Effect of Ethrel concentration on TSS of banana                        | 100 |
| Figure 7  | Effect of Ethrel concentration on TSS: Acidity ratio of banana         | 101 |
| Figure 8  | Effect of Ethrel concentration on organoleptic properties of banana    | 102 |
| Figure 9  | Effect of ripening agents on Firmness and titratable acidity of banana | 103 |
| Figure 10 | Effect of ripening agents on TSS of banana                             | 103 |
| Figure 11 | Effect of ripening agents on Ascorbic acid content of banana           | 104 |
| Figure 12 | Effect of ripening agents on organoleptic properties of banana         | 104 |
| Figure 13 | Effect of ripening temperature on TSS of banana                        | 105 |
| Figure 14 | Effect of ripening temperature on acidity of banana.                   | 105 |
| Figure 15 | Effect of ripening temperature on Ascorbic acid content of banana      | 106 |
| Figure 16 | Effect of exposure time of ethrel on colour development of banana      | 107 |
| Figure 17 | Effect of exposure time to ethral on TSS of banana fruit tissue.       | 107 |

| Figure 18 | Effect of exposure time of ethrel on titratable acidity of banana                                    | 108 |
|-----------|------------------------------------------------------------------------------------------------------|-----|
| Figure 19 | Effect of exposure time of ethrel on weight loss, fruit firmness and ascorbic acid content of banana | 108 |
| Figure 20 | Effect of exposure time of ethrel on organoleptic attributes of banana                               | 109 |
| Figure 21 | Effect of ethylene gas on TSS and Ascorbic aid levels of papaya                                      | 110 |
| Figure 22 | Effect of ethylene gas on titratable acidity of papaya                                               | 112 |
| Figure 23 | Effect of ethylene gas on Brix : acid ratio of papaya                                                | 112 |
| Figure 24 | Effect of ethylene gas on organoleptic properties of papaya                                          | 113 |
| Figure 25 | Effect of Ethrel concentration on TSS, Ascorbic acid and fruit firmness of Papaya                    | 114 |
| Figure 26 | Effect of Ethrel concentration on titratable acidity of Papaya.                                      | 115 |
| Figure 27 | Effect of Ethrel concentration on TSS: Acidity ratio of Papaya                                       | 115 |
| Figure 28 | Effect of Ethrel concentration on organoleptic properties of Papaya.                                 | 116 |
| Figure 29 | Effect of Ethrel concentration on development of maturity stage                                      | 116 |
| Figure 30 | Effect of ripening agents on weight loss, firmness, and pH of Papaya.                                | 117 |

| Figure 31  | Effect of ripening agents on ascorbic acid content and TSS of Papaya | 118 |
|------------|----------------------------------------------------------------------|-----|
| Figure 32  | Effect of ripening agents on Titratable acidity of Papaya            | 118 |
| Figure 33  | Effect of ripening agents on organoleptic characters                 | 119 |
| Figure 34  | Influence of temperature on lightness (L values) of papaya           | 121 |
| Figure 35  | Influence of temperature on chroma (C values ) of papaya             | 121 |
| Figure 36  | Influence of temperature on hue angle (°h) of papaya                 | 122 |
| Figure 37  | Influence of temperature on hue (°h), peel and flesh colour          | 122 |
| Figure 38: | Effect of ethylene gas on TSS of mango                               | 124 |
| Figure 39  | Effect of ethylene gas on titratable acidity of mango                | 125 |
| Figure 40  | Effect of ethylene gas on TSS: acidity ratio of mango                | 125 |
| Figure 41  | Effect of ethylene gas on Ascorbic acid content and pH of mango      | 126 |
| Figure 42  | Effect of ethylene gas on organoleptic properties of mango           | 126 |
| Figure 43  | Effect of ethylene on firmness and weight loss of mango              | 127 |
| Figure 44  | Effect of Ethrel concentration on fruit firmness and ascorbic        | 128 |
|            | acid content in Mango.                                               | 100 |
| Figure 45  | Effect of Ethrel concentration on titratable acidity of Mango.       | 129 |

| Figure 46 | Effect of Ethrel Concentration on TSS of mango                                                             | 129 |
|-----------|------------------------------------------------------------------------------------------------------------|-----|
| Figure 47 | Effect of Ethrel concentration on TSS: acid ratio of mango                                                 | 130 |
| Figure 48 | Effect of Ethrel concentration on colour development                                                       | 130 |
| Figure 49 | Effect of Ethrel concentration on organoleptic properties                                                  | 131 |
| Figure 50 | Effect of ripening agents on fruit firmness of Mango                                                       | 132 |
| Figure 51 | Effect of ripening Mango agents on titratable acidity                                                      | 132 |
| Figure 52 | Effect of ripening agents on TSS of Mango                                                                  | 133 |
| Figure 53 | Effect of ripening agents on TSS: acidity ratio of Mango                                                   | 133 |
| Figure 54 | Effect of ripening agents on colour development (hue angle) of Mango, before and after ripening treatments | 134 |
| Figure 55 | Effect of ripening agents on organoleptic properties of Mango                                              | 134 |
| Figure 56 | Combined effects of temperature and ethylene on pH of mango                                                | 136 |
| Figure 57 | Changes in TSS and pH of mango during development (7-14weeks after fruit set)                              | 137 |
| Figure 58 | Changes in titratable acidity of mango during development (7-14weeks after fruit set)                      | 137 |
| Figure 59 | Changes in Ascorbic acid content of mango during development (7-14weeks after fruit set)                   | 138 |

| Figure 60 | Changes in fruit firmness of mango during development<br>-14weeks after fruit set)            | 138 |
|-----------|-----------------------------------------------------------------------------------------------|-----|
| Figure 61 | Changes in TSS:acid ratio of mango during development (7-14weeks after fruit et)              | 139 |
| Figure 62 | Effect of maturity stage on firmness of mango exposed to ethrel treatment                     | 140 |
| Figure 63 | Effect of maturity stage on TSS of mango exposed to ethrel treatment.                         | 140 |
| Figure 64 | Effect of maturity stage on titratable acidity mango exposed to ethrel treatment.             | 141 |
| Figure 65 | Effect of maturity stage on organoleptic characteristics of mango exposed to ethrel treatment | 142 |
| Figure 66 | Individual effects of temperature and ethrel concentration on TSS of tomato                   | 146 |
| Figure 67 | Combined effects of ethrel and temperature on TSS of tomato                                   | 146 |
| Figure 68 | Individual effects of ethrel and temperature on Titratable acidity                            | 147 |
| Figure 69 | Combined effects of ethrel and temperature on Titratable acidity                              | 147 |
| Figure 70 | Individual effects of ethrel and temperature on the Hue angle (red colour) of Tomato          | 148 |
| Figure 71 | Combined effects of ethrel and temperature on hue angle                                       | 148 |

| Figure 72 | Effect of light on hue angle of tomato harvested at mature green                                                                           | 152 |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure 73 | Effect of light quality on hue angle of tomato harvested at breaker stage                                                                  | 154 |
| Figure 74 | Effect of light quality on hue angle of tomato harvested at turning stage                                                                  | 154 |
| Figure 75 | Development of Red colour of tomato at turning stage<br>treated with light                                                                 | 155 |
| Figure 76 | Changes in the hue angle of tomato during storage at $12^{\circ} \pm 2^{\circ}$ C, for 4 weeks                                             | 156 |
| Figure 77 | Changes in the edible yield of tomato (harvested at three maturity stages) during storage for 4 weeks at $12^\circ \pm 2^\circ$ C.         | 157 |
| Figure 78 | Changes in firmness of tomato (harvested at three maturity stages) during storage for 4 weeks at $12^\circ \pm 2^\circ$ C.                 | 158 |
| Figure 79 | Changes in the titratable acidity of tomato harvested<br>at three maturity stages during storage for 4 weeks at 12°±2° C.                  | 158 |
| Figure 80 | Changes in the total soluble solids of tomato (harvested at three maturity stages) during storage for 4 weeks at $12^\circ \pm 2^\circ$ C. | 159 |
| Figure 81 | Changes in the ascorbic acid content of tomato (harvested at three maturity stages) during storage for 4 weeks at $12 \pm 2^{\circ}$ C.    | 159 |
| Figure 82 | Changes in the hue angle of tomato stored for 4 weeks<br>at $12 \pm 2^{\circ}$ C and exposed to ethrel at two temperatures                 | 163 |

### List of Plates

| Plate 1 | Trickle system used on the ripening chamber                            | 101 |
|---------|------------------------------------------------------------------------|-----|
|         | to ripen banana                                                        |     |
| Plate 2 | Bananas exposed ethrel for different exposure periods                  | 109 |
| Plate 3 | Preparation of ethylene gas                                            | 111 |
| Plate 4 | Papayas being ripened in the 93 L glass cubicles                       | 111 |
| Plate 5 | Female and hermaphrodite fruits of Rathna                              | 113 |
| Plate 6 | Papayas ripened with different ripening agents                         | 119 |
| Plate 7 | Tomatoes being harvested at Bandarawella                               | 153 |
| Plate 8 | Light treatment on tomatoes                                            | 153 |
| Plate 9 | Tomatoes (T <sub>245</sub> ) after storage at $12 \pm 2^{\circ}$ C for | 167 |
|         | 2 weeks and 4 weeks                                                    |     |

## List of Appendices

| Appendix 1 | Ripening guide for Embul banana                                              | 233 |
|------------|------------------------------------------------------------------------------|-----|
| Appendix 2 | Hedonic scale used for organoleptic evaluation                               | 234 |
| Appendix 3 | Maturity indices for papaya (Rathna)                                         | 235 |
| Appendix 4 | Maturity indices for Tomato (T <sub>245</sub> )                              | 236 |
| Appendix 5 | Atomic absorption method for determination<br>of Arsenic in CaC <sub>2</sub> | 237 |
| Appendix 6 | LCH colour space                                                             | 238 |

#### **List of Papers Presented and Publications**

- A scientific paper titled "The Effect of Selected Ripening Agents on Papaya" was presented at Post Harvest 2000 on the opening day at the 4<sup>th</sup> International Conference on Post Harvest Science held on 27<sup>th</sup> March 2000 in Jerusalem, Israel. This paper has been published in the Acta Horticulture June 2001. (Number 553, Volume 1)
- Poster presentation on "The Effect of Selected Ripening Agents on Physico-chemical Properties of Banana" was carried out at the Annual Sessions SLAAS at Peradeniya on the 30<sup>th</sup> November 2000.
- A scientific paper titled "Influence of Ethylene Gas on Mango (variety Karuthakolomban)" was presented at the Annual Sessions SLAAS Peradeniya on 01<sup>st</sup> December 2000.
- 4. A scientific paper tilted "Development of Red colour of Harvested Tomato" was presented at the Annual Sessions of SLAAS Moratuwa on the 30<sup>th</sup> November 2001.

#### Acknowledgements

I wish to express my gratitude and heartfelt thanks to my supervisor Dr. Shanthi Wilson Wijerathnam, Manager Postharvest Technology group of the Industrial Technological Institute for her invaluable advice, encouragement, guidance and support extended to me at all times during the period of my research. Her interest, enthusiasm and commitment were always a source of inspiration to me.

My grateful thanks are also due to my internal supervisor Prof. A. Bamunuarachchi of the University of Sri Jayewardenepura for his guidance and generous help extended to make this study a success.

Thanks are due to Dr.Ms.Malinie Abeysekara and Dr.Ms.Dharini Sivakumar, senior research officers of the Postharvest group for their extended support and corporation. .My sincere thanks to Ms. Shiranthi Perera for her technical help, invaluable support and advice and also to Ms Ilmi Hewajulige for her help extended towards the statistical analysis of this study. I am also deeply grateful to Ms. Thushari Deheragoda for secretarial assistance in the preparation of this manuscript. My gratitude also goes to the entire postharvest team specially Ms Nimali Abeyratne, Ms Preethika Weerasingha, Ms Prasadi Sapukotana, Mr.Anurashantha Amaratunga, Mr.B.W.U. Padmalal and Mr S. Siriwardena for their help in numerous ways. Thanks are also due to Ms Krishnashanthi, Mr. I.Samarasinghe and Ms.J.Balasubramaniyam students on training for their help during the study.

I would like to express my heartfelt thanks to my husband Eshan for his encouragement, moral support, and help in the preparation of the references section; and also my son Avantha for his technical assistance in the computer work during the preparation of this thesis. I sincerely thank them for their patience and excusing me for the many hours lost with them.

A special word of thanks to my parents, Mr. and Mrs. Mark Mendis and my uncle Prof. J.N.O.Fernando for their interest, moral support and constant encouragement bestowed on me. Special heartfelt thanks are due to my father for his help extended during the final stages of this thesis, due to my inability to attend to it from Australia.

I am indebted to the Industrial Technology Institute and the Council for Agricultural Research Policy for providing the necessary resources and facilities for the study.

# STUDIES ON RIPENING PROCEDURES FOR PERISHABLE COMMODITIES INTENDED FOR THE DOMESTIC MARKET IN SRI LANKA

By Fenella M.E Jayawickreme

#### ABSTRACT

Post harvest losses in Sri Lanka are estimated to be approximately 40-60%. Mechanical injury during transportation has been identified as one of the major causes of these losses. Loss due to mechanical injury could be reduced if fruits are transported while they are firm in texture and therefore less vulnerable to rough handling during these operations. Ripening could then be induced after transportation and prior to distribution by the whole-saler. This study was conducted in order to regularize and introduce improved handling procedures in Sri Lanka and thereby reducing postharvest loss due to mechanical injury. At present growers pick fruits at various stages of maturity while traders ripen fruits by smoking and the use of Calcium carbide.

The commodities identified for this study are Banana, Papaya, Mango and Tomato. Ripening was observed to be hastened when banana, papaya and mango were exposed to ethylene gas, while tomatoes proved to be not sensitive to this treatment. As ethylene gas in cylinders is not available in Sri Lanka and the import of the gas would not be cost effective for use by traders, an alternate method was adopted where Ethrel (2-chloroethyl phosphonic acid) and NaOH were combined to release the required ethylene gas.

The studies revealed that a dosage of 100ppm -150ppm of ethylene gas or 0.8 mL ethrel and 0.4 g NaOH would ripen bananas of 'Embul 'variety, in a volume of 288 L in 48 hours. The study also revealed that Embul bananas required only 18 hours of exposure time to ethylene. However, papaya (variety 'Rathna') and mango (variety 'Karuthakolomban') were exposed to ethylene for 24 hours to induce the ripening process. Both papaya and mango would be ready for consumption after four to five days after exposing to ethylene gas. To induce the ripening process in papayas (on a volume of 288L), the fruits should be exposed to 200ppm to 300ppm ethylene gas or 1.65 mL ethrel and 0.8g NaOH. Studies revealed that, to ripen mangoes on the same volume, an ethylene gas concentration of 250 ppm or 1.65 mL ethrel and 0.8g NaOH would be suitable.

A comparison study of ripening agents (ethylene gas, ethrel and calcium carbide), proved ethrel as the most suitable ripening agent to ripen bananas, papayas and mangoes. Temperature studies on these commodities indicated that the high ambient temperatures, (28±2° C) prevailing in Sri Lanka are suitable to ripen papaya and mango using ripening agents. No adverse effects on bananas of Embul (Sour) variety were observed at this temperature. However bananas ripened at 22°C were observed to be better in cosmetic appearance and quality.

With the tested domestic varieties of tomatoes, a temperature of  $22\pm2^{\circ}C$  induced better development of red colour, while higher ambient temperatures in Sri Lanka retarded the process, due to the conversion of lycopene to  $\beta$ -carotene at high temperatures. A red light (650-700nm) treatment at ambient temperature ( $28\pm2^{\circ}C$ )on tomatoes harvested at colour turning stage resulted in development of more redness in them. The light treatment induces the formation of lycopene via the activated phytochrome. A storage study on tomato indicated that, mature green tomatoes were more suitable for long-term storage (approximately one month) while breaker stage tomato could be stored up to 2 weeks at  $12^{\circ}C$ .