20 406 2014

ම්ෂ්චාද (

Study on the effect of maturity, geographical location, seasonal variation and processing method on fatty acid profile of Tilapia

By

Udumalebbe Abdul Majeed

Ph.D

2013

Study on the effect of maturity, geographical location, seasonal variation and processing method on fatty acid profile of Tilapia

By

Udumalebbe Abdul Majeed

Thesis submitted to the University of Sri Jayawardenepura for the award of the Degree of Doctor of Philosophy in Food Science and Technology in 2013.

DECLRATION

The work described in this thesis was carried out by me under the supervision of;

Professor Arthur Bamunuarachchi Emeritus Professor Professor in Applied Chemistry Department of Food Science & Technology Faculty of Applied Sciences University of Sri Jayawardenepura

Gangodawila, Nugegoda

Professor K. K. D. S. Ranaweera

Professor in Food Science & Technology

Department of Food Science & Technology

Faculty of Applied Sciences

University of Sri Jayawardenepura

Gangodawila, Nugegoda

A report on this has not been in whole or in part submitted to any University or other Institutions for another Degree or Diploma

ma

Udumalebbe Abdul Majeed

2014-08-19

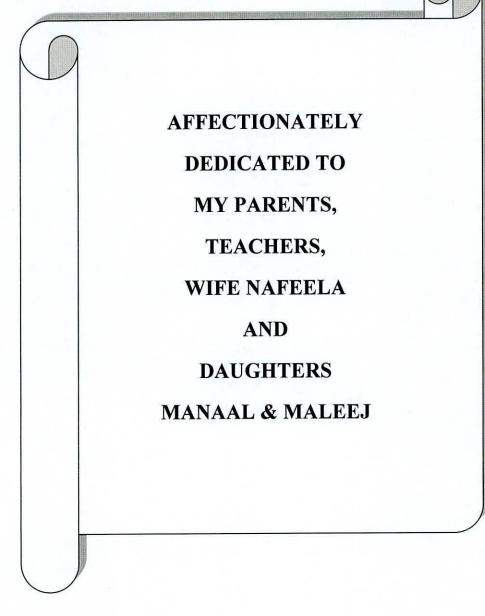
Date

Declaration of the Supervisors

We certify that the statement made by the candidate is true and that this thesis is suitable for submission to the University of Sri Jayawardenepura for the purpose of evaluation.

the

Professor Arthur Bamunuarachchi Emeritus Professor Professor of Applied Chemistry Department of Food Science & Technology Faculty of Applied Sciences University of Sri Jayawardenepura Gangodawila, Nugegoda


Mum

Professor K. K. D. S. Ranaweera Professor of Food Science & Technology Department of Food Science & Technology Faculty of Applied Sciences University of Sri Jayawardenepura Gangodawila, Nugegoda We certify that the candidate is submitting this thesis with all corrections, additions and amendments attended in accordance with the comments and suggestions by the examiners.

Professor Arthur Bamunuarachchi Emeritus Professor Professor of Applied Chemistry Department of Food Science & Technology Faculty of Applied Sciences University of Sri Jayawardenepura Gangodawila, Nugegoda

Mums

Professor K. K. D. S. Ranaweera Professor of Food Science & Technology Department of Food Science & Technology Faculty of Applied Sciences University of Sri Jayawardenepura Gangodawila, Nugegoda

TABLE OF CONTENTS

TABLE OF CONTENTS	i
LIST OF TABLES	vi
LIST OF FIGURES	viii
ACKNOWLEDGEMENT	x
LIST OF ABBREVIATIONS	xi
ABSTRACT	xiv
CHAPTER 1: INTRODUCTION	
CHAPTER 2: REVIEW OF LITERATURE	6
2.1 Fish oil and its composition	6
2.1.1 Fish oils	6
2.1.2 Nutritive value of fish and fish oil	10
2.1.2.1 Vitamins	14
2.1.2.2 Minerals	15
2.1.2.3 Calorific values	16
2.1.3 Fatty acid composition of fish oil	16
2.1.4 Essential fatty acids (EFAs)	17
2.1.5 n-3 Fatty acids	20
2.1.5.1 Eicosapentaenoic acid (EPA, 20:5 n-3)	21
2.1.5.2 Docosahxaenoic acid (DHA, 22:6 n-3)	24
2.1.5.3 Docosapentaenoic acid -DPA (22:5 n-3)	26
2.1.6 Marine and freshwater fish oil	26
2.1.7 Cholesterol	28
2.2 Metabolic pathways	31
2.2.1 Metabolic synthesis of PUFAs	31
2.2.2 Metabolic synthesis of eicosanoids	33
2.2.3 Fish oil supplementation	43
2.2.4 Recommended dietary allowance of fish oil	45
2.2.5 n-3/n-6 Ratio	49
2.3 Fish production	51
2.3.1 World fisheries scenario	51
2.3.2 Scenario of fish production of South Asian countries	52
2.3.3 Fish production in Sri Lankan	53
2.3.4 Fisheries sector in the economy of Sri Lanka	55

2.3.5 Inland and aquaculture fishery of Sri Lanka	56
2.3.5.1 Inland and aquaculture fish production	56
2.3.5.2 Tilapia fish production	57
2.3.5.3 Nutritional facts of tilapia	60
2.3.5.4 Maturity stage of Tilapia	60
2.3.5.5 Underutilized fish species	61
2.3.5.6 Freshwater bodies of Sri Lanka	62
2.4 Climatic conditions of Sri Lanka	63
2.4.1 Climatic seasons	63
2.4.2 Climatic zones of Sri Lanka	64
2.5 method of fish processing	66
2.5.1 Thermal processing	66
2.5.1.1 Smoking	66
2.5.1.2 Boiling	67
2.5.1.3 Frying	69
CHAPTER 03: MATERIALS AND METHOD	71
3.1 The effect of maturity variation on proximate composition	71
3.1.1 Estimation of moisture content (AOAC, 1980a)	72
3.1.1.1 Materials.	72
3.1.1.2 Method	72
3.1.2 Estimation of ash content (AOAC, 1980b)	73
3.1.2.1 Materials	73
3.1.2.2 Method	73
3.1.3 Estimation of fat content- (Bligh and Dyer, 1959)	74
3.1.3.1 Materials	74
3.1.3.2 Method	75
3.2 The effect of geographical distribution on proximate composition	75
3.2.1 Estimation of Moisture content	77
3.2.1.1 Materials	77
3.2.1.2 Method	77
3.2.2 Estimation of Ash content	77
3.2.2.1 Materials	77
3.2.2.2 Method	77
3.2.3 Estimation of Fat content	77

ii

3.2.3.1 Materials	77
3.2.3.2 Method	77
3.3 The effect of seasonal variation on proximate composition	77
3.3.1 Estimation of Moisture content	78
3.3.1.1 Materials	78
3.3.1.2 Method	78
3.3.2 Estimation of Ash content	78
3.3.2.1 Materials	78
3.3.2.2 Method	79
3.3.3 Estimation of Fat content	79
3.3.3.1 Materials	79
3.3.3.2 Method	79
3.4 The effect of different processing method on proximate composition	79
3.4.1 The effect of smoking on Moisture content	82
3.4.1.1 Materials	82
3.4.1.2 Method	82
3.4.2 The effect of smoking on Ash content	82
3.4.2.1 Materials	82
3.4.2.2 Method	82
3.4.3 The effect of smoking on Fat content	82
3.4.3.1 Materials	82
3.4.3.2 Method	82
3.4.5 The effect of boiling on moisture content	82
3.4.5.1 Materials	82
3.4.5.2 Method	82
3.4.6 The effect of boiling on ash content	82
3.4.6.1 Materials	82
3.4.6.2 Method	82
3.4.7 The effect of boiling on fat content	83
3.4.7.1 Materials	83
3.4.7.2 Method	83
3.4.8 The effect of frying on moisture content	83
3.4.8.1 Materials	83
3.4.8.2 Method	83

3.4.9 The effect of frying on ash content	83
3.4.9.1 Materials	83
3.4.9.2 Method	83
3.4.10 The effect of frying on fat content	83
3.4.10.1 Materials	83
3.4.10.2 Method	83
3.5 Effect of maturity variation on fatty acid composition (AOCS, 1992)	84
3.5.1 Materials	84
3.5.2 Method	85
3.5.2.1 Preparation of Solutions	85
3.5.2.2 Preparation of fatty acid methyl esters (FAME)	86
3.5.2.3 Injecting the FAME into GC-MS	86
3.5.3 Statistical analyses	87
3.6 Effect of geographical distribution on fatty acid composition	87
3.6.1 Materials	87
3.6.2 Method	87
3.6.3 Statistical analyses	87
3.7 Effect of seasonal variation on fatty acid composition	88
3.7.1 Materials	88
3.7.2 Method	88
3.7.3 Statistical analyses	88
3.8 Effect of different processing method on fatty acid composition.	88
3.8.1 Effect of smoking on fatty acid composition	88
3.8.1.1 Materials	88
3.8.1.2 Method	88
3.8.2 Effect of boiling on fatty acid composition	88
3.8.2.1 Materials	88
3.8.2.2 Method	88
3.8.3 Effect of frying on fatty acid composition	89
3.8.3.1 Materials	89
3.8.3.2 Method	89
3.8.3.3 Statistical analysis	89
CHAPTER 04: RESULTS AND DISCUSSION	90
4.1 The effect of maturity variation on proximate composition	90

4.1.1 Moisture content	90
4.1.2 Ash content	94
4.1.3 Fat content	96
4.2 The effect of geographical distribution on proximate composition	102
4.2.1 Moisture content	102
4.2.2 Ash Content	104
4.2.3 Fat Content	106
4.3 Effect of seasonal variation on proximate composition	108
4.3.1 Moisture content	108
4.3.2 Ash Content	113
4.3.3 Fat Content	115
4.4 The effect of different processing method on proximate composition	118
4.4.1 The effect of smoking process on moisture content	118
4.4.2 The effect of smoking process on ash content	120
4.4.3 The effect of smoking process on fat content	121
4.4.4 The effect of boiling (cooking) process on moisture content	121
4.4.5 The effect of boiling (cooking) process on ash content	124
4.4.6 The effect of boiling (cooking) process on fat content	125
4.4.7 The effect of frying process on moisture content	126
4.4.8 The effect of frying process on ash content	129
4.4.9 The effect of frying process on fat content	130
4.5 Effect of maturity variation on fatty acid composition	132
4.6 Effect of geographical distribution on fatty acid composition	145
4.7 The effect of seasonal variation on fatty acid composition	161
4.8 The effect of different processing method on fatty acid composition	175
4.8.1 The effect of smoking on fatty acid composition	178
4.8.2 The effect of boiling on fatty acid composition	180
4.8.3 The effect of frying on fatty acid composition	185
CHAPETR 05: CONCLUSION	191
REFERENCES	198
APPENDICES	i - xi

LIST OF TABLES

Table 2.1: Lipid categories and typical examples	7
Table 2.2: Nutritionally important n-6 PUFAs	12
Table 2.3: Nutritionally important n-3 PUFAs	13
Table 2.4: Total fat, EPA and DHA content of different fish species	23
(g/100g)	
Table 2.5: Physiological actions of eicosanoids derived from AA (20:4 n-6)	40
Table 2.6: Physiological actions of eicosanoids derived from EPA	41
(20:5 n-3) and DHA (22:6 n-3)	
Table 2.7: Recommendations for fish and/or EPA+DHA intakes for healthy	46
adults from government and health organizations worldwide	
Table 2.8: World fisheries and aquaculture production and	51
utilization (Million Tons)	
Table 2.9: Annual fish production by different sub sector	54
Table 2.10:Nutritional data of Tilapia fish	60
Table 2.11:Climatic seasons of Sri Lanka	63
Table 2.12: The principal and sub-climatic zones of Sri Lanka	65
Table 3.1: Biometric data of O.niloticus of maturity variation	71
Table 3.2: Biometric data of O. niloticus of geographical distribution	76
Table 3.3: Biometric data of O. niloticus of seasonal variation	78
Table 4.1.1.1: The percent proximate composition of fish at different	91
maturity stages (Mean \pm SD, n = 5, Wet weight basis)	
Table 4.2.1.1: The percent proximate composition of O.niloticus of	103

geographical distribution (Wet weight basis)

Table 4.3.1.1:	: The percent proximate composition of seasonal study	109
	(Wet weight basis)	
Table 4.4.1.1	: The percent proximate composition of O. niloticus	119
	flesh treated with different processing methods	
	(Mean \pm SD, n=4, 2 specimen per each stage)	
Table 4.5.1: 7	The percent fatty acid composition of maturity stages	133
Table 4.6.1: 7	The per cent individual fatty acid of geographical	147
d	listribution	
Table 4.6.2: 7	The percent group fatty acids of geographical distribution	150
Table 4.7.1: 7	The per cent individual fatty acid of seasonal variation	162
(Mean \pm SD)	
Table 4.7.2: 7	The percent total group fatty acid contents of different	164
s	easons	
Table 4.8.1: 1	The per cent total group fatty acid of processing methods	176

LIST OF FIGURES

Figure: 2.1	Major producers of world fish body oil	10
Figure: 2.2	Chemical structure of Linoleic acid (LA, 18:2 n-6)	18
Figure: 2.3	Chemical structure of Alpha linolenic acid (ALA, 18:3 n-3)	18
Figure: 2.4	Chemical structure of Eicosapentaenoic acids (EPA, 20:5 n-3)	22
Figure: 2.5	Chemical structure of Docosahexaenoic acid (DHA, 22:6 n-3)	24
Figure: 2.6	Chemical structure of Docosapentaenoic acid (DPA, 22:5 n-3)	26
Figure: 2.7	Chemical structure of cholesterol	30
Figure: 2.8	Metabolic pathways of dietary n-6 and n-3 PUFAs	32
Figure: 2.9	Eicosanoid formation from AA via the COX and 5-LOX pathways.	35
Figure: 2.10	Eicosanoid formation from EPA via the COX) and (5-LOX)	37
1 igure. 2.10	pathways	
Figure: 2.11	Metabolic pathways for the conversion of EPA and DHA to	38
U	resolvins and protectins	
Figure: 2.12	Fish production of SouthAsianCountries-1990 and 2010	53
Figure: 2.13	Quantity and value of fish and fishery products export - 2011	56
Figure: 2.14	Inland and Aquaculture fish production by major species	59
D' 0.15		()
Figure: 2.15	Main climatic zones of Sri Lanka	64
Figure: 4.1.	1.1 Moisture contents of O. niloticus of maturity stages	93
Figure: 4.1.2	2.1 Ash content of O.niloticus of maturity stages	95
Figure: 4.1.	3.1 The proximate composition of O. niloticus of maturity	97
	stages	
Figure: 4.1.	3.2 The percent fat content of O.niloticus at different maturity	98
	stages	

Figure: 4.2.1.1	The percent proximate composition of O.niloticus of	103
	geographical distribution (Wet weight basis)	
Figure: 4.2.1.2	The percent moisture content of O.niloticus of geographical	104
	distribution	
Figure: 4.2.2.1	The percent ash contents of O.niloticus of geographical	105
	distribution (Wet weight basis)	
Figure: 4.2.3.1	The percent fat contents of O.niloticus of geographical	107
	distribution (Wet weight basis)	
Figure: 4.3.1.1	The percent moisture contents of O.niloticus of seasonal	111
	variation	
Figure: 4.3.1.2	Proximate composition of O.niloticus of seasonal variation	112
Figure: 4.3.2.1	The percent ash contents of O.niloticus of seasonal	114
	variation	
Figure: 4.3.3.1	The percent fat contents of O.niloticus of seasonal variation	116
Figure: 4.4.1.1	The effect of processing methods on proximate	119
	composition of O.niloticus	
Figure: 4.4.1.2	The effect of smoking process on moisture, ash and fat	120
	content of O.niloticus	
Figure: 4.4.4.1	The effect of boiling process on moisture, ash and fat	122
	contents of O.niloticus	
Figure: 4.4.7.1	The effect of frying process on moisture, ash and fat	127
	contents of O. niloticus	
Figure: 4.5.1 7	The percent fatty acid compositions of maturity stages	135
Figure: 4.6.1 7	The percent group fatty acid contents of geographical	152
(listribution	
Figure: 4.7.1	The percent total group fatty acid content of seasonal	165
,	variation	
Figure: 4.8.1	The per cent total group fatty acid of processing methods	176
Figure: 4.8.1.1	The effect of smoking on fatty acid composition	179
Figure: 4.8.2.1	The effect of boiling on fatty acid composition	181
Figure: 4.8.3.1	The effect of frying on fatty acid compositions	186

ACKNOWLEDGEMENT

I wish to express my sincere thanks to Dr (Mrs) Yasmina Sultanbawa (Presently in Australia), former Senior Research Officer, Industrial Technology Institute (ITI), for seeking financial support from the National Science Foundation for me to undertake this research project.

I also wish to express my deepest gratitude to Emeritus Prof. Arthur Bamunuarchchi, Professor of Applied Chemistry, Department of Food Science & Technology, Faculty of Applied Sciences, University of Sri Jayawardenepura, for his willingness to supervise, provide invaluable guidance, advice, encouragement, through this study and for reading the manuscript and sparing his time in bringing this endeavor to a successful completion.

I wish to express my sincere gratitude to Professor. K. K. D. S. Ranaweera, (Director, Bandaranaike Ayurvedic Research Institute, Navinna, Sri Lanka), Department of Food Science & Technology, Faculty of Applied Sciences, University of Sri Jayawardenepura, for his invaluable guidance, support, and advice.

Further, my sincere thanks are extended to Dr (Mrs) Indira Wickramasinghe, Head, Department of Food Science & Technology, Faculty of Applied Sciences, University of Sri Jayawardenepura, for her invaluable guidance, support, advice and assistance during this study period.

I also wish to thank Dr. Ranjith Edirisinghe, (formerly Senior Research Officer, NARA), presently Senior Lecturer, Faculty of Science, Rajarata University of Sri Lanka, for his assistance and support for this study.

My thanks are also offered to Professor (Mrs) Shiromi Samarasinghe, Head, Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayawardenepura, for granting permission to use the GC-MS facility to complete this work.

I am also thankful to Mr. S. Dharmesh, Development Officer, Ministry of Technology and Research, Colombo-3, for assisting me in preparing the thesis with computer application.

I would also like to thank all the academic and non academic staff members of the Department of Food Science & Technology, Faculty of Applied Sciences, University of Sri Jayawardenepura, for their kind assistance and support throughout this study.

I greatly remember and value the morale support from my family that gave me continuous encouragement to complete this work to a success. My heartfelt thanks to my wife, Sithy Nafeela and ever loving daughters Manaal and Maleej for bearing my absence during this period.

LIST OF ABBREVIATIONS

y

GDP - Gross Domestic Product

GLA - Gamma Linolenic Acid

HDL-C- High Density Lipoprotein-Cholesterol

HEPE -Hydroxyeicosapentaenoic Acid

HETE -Hydroxyeicosatetraenoic Acid

HPEPE-Hyrdoperoxyeicosdapentaenoic Acid

HPETE- Hydroperoxyeicosatetraenoic Acid

HUFA -Highly Unsaturated Fatty Acid

IBD - Inflammatory Bowel Disease

IL - Interleukin

IOM - Institute of Medicine

IQ - Intelligence Quotient

LA - Linoleic Acid

LC -Long Chain

LC-PUFA-Long Chain Polyunsaturated Fatty Acids

LDL- C-Low Density Lipoprotein-Cholesterol

LOX -Lipoxygenase

LT -Leukotriene

MAG - Monoacylglyceride

MFARD- Ministry of Fisheries and Aquatic Resources Development

MI - Myocardial Infarction

NAQDA- National Aquaculture Development Authority

PG - Prostaglandin

PL - Phospholipid

PUFA - Polyunsaturated Fatty Acids

RDA - Recommended Dietary Allowance

SCD - Sudden Cardiac Death

- SCFA Short Chain Fatty Acid
- SDA Stearidonic Acid
- SFA Saturated Fatty Acid
- TAG Triacylglyceride
- TX -Thromboxane
- UK United Kingdom
- US United States
- VLDL-C-Very Low Density Lipoprotein-Cholesterol
- WHO World Health Organization

Study on the effect of maturity, geographical location, seasonal variation and processing method on fatty acid profile of Tilapia

Udumalebbe Abdul Majeed

ABSTRACT

Tilapia (*Oreochromis niloticus*) is a freshwater fish species that is widely cultured and frequently consumed in Sri Lanka. It is a good source of proteins and health improving fatty acids.

A study was carried out to investigate the impact of maturity stages (six maturity stages, weight ranging from $(97.50 \pm 2.12 \text{ g} \text{ to } 543.00 \pm 12.72 \text{ g})$, geographical distribution, seasonal effects and processing methods on proximate composition and fatty acid profiles of Nile tilapia (*O. niloticus*) fillets. For maturity variation, six different sized groups of samples were selected. For assessing the effect of geographical distribution, samples were collected from two different locations, namely, Bandarawela (Wet zone) and Mannar (Dry zone). For studying the seasonal variation, the samples were collected at one month interval over a period of six consecutive months. Smoking, boiling, and frying (in virgin coconut oil) were adopted as processing methods and compared with raw samples.

The proximate composition was assessed as described in the AOAC (1984) and the oil from Tilapia fillets was extracted according to (Bligh and Dyer, 1959). The preparation of fatty acid methyl esters (FAME) and the analysis of GC-MS were done according to (AOCS, 1992).

Proximate values of nutrients namely moisture, ash and fat contents showed a significant variation with maturity stage, geographical location, season and processing

method. Significant variation (p<0.05) was observed only in n-6 FAs and n-3/n-6 ratio with respect to maturity stage. Significant variations (p<0.05) were observed in PUFAs, n-3 FAs and EPA+DHA content with respect to time (January, February and March, 2013), whereas no significant variation (p>0.1) was observed with respect to geographical locations. Significant variation (p<0.1) was observed in SFAs with respect to geographical locations, while not (p>0.1) with respect to time (January, February and March, 2013). No significant variations (p>0.1) were observed in MUFAs, n-6 FAs and n-3/n-6 ratio with respect to both geographical location and time as well. Significant variation (p<0.05) was observed in SFAs, MUFAs, PUFAs, n-3 FAs, EPA+DHA and n-3/n-6 ratio with respect to season, whereas, no significant variation was observed in n-6 FAs. Significant variations (p<0.05) were observed in PUFAs, n-3 FAs, EPA+DHA and n-3/n-6 ratio, SFAs (p<0.1) and MUFAs (p<0.1) with respect to processing methods, whereas no significant variation (p>0.1) was observed in n-6 FAs. Marginal variations in FAs were observed in smoking and boiling process, whereas, significant variations in FAs were observed in frying process. Frying in coconut oil significantly reduced the health beneficial n-3 FAs such as EPA and DHA.

Since the study showed significant variations with respect to maturity, geographical location and seasonal variation, it is suggested that Tilapia is reared in ponds under controlled conditions so that the highest benefits with respect to protein content and health beneficial fatty acids are obtained.