Study on the effect of maturity, geographical location, seasonal variation and processing method on fatty acid profile of Tilapia

By

Udumalebbe Abdul Majeed

Ph.D 2013
Study on the effect of maturity, geographical location, seasonal variation and processing method on fatty acid profile of Tilapia

By

Udumalebbe Abdul Majeed

Thesis submitted to the University of Sri Jayawardeneepura for the award of the Degree of Doctor of Philosophy in Food Science and Technology in 2013.
DECLARATION

The work described in this thesis was carried out by me under the supervision of;

Professor Arthur Bamunuarachchi
Emeritus Professor
Professor in Applied Chemistry
Department of Food Science & Technology
Faculty of Applied Sciences
University of Sri Jayawardenepura
Gangodawila, Nugegoda

Professor K. K. D. S. Ranaweera
Professor in Food Science & Technology
Department of Food Science & Technology
Faculty of Applied Sciences
University of Sri Jayawardenepura
Gangodawila, Nugegoda

A report on this has not been in whole or in part submitted to any University or other Institutions for another Degree or Diploma

[Signature]
Udumalebbe Abdul Majeed

[Date]
2014-08-19
Declaration of the Supervisors

We certify that the statement made by the candidate is true and that this thesis is suitable for submission to the University of Sri Jayawardenepura for the purpose of evaluation.

..
Professor Arthur Bamunuarachchi
Emeritus Professor
Professor of Applied Chemistry
Department of Food Science & Technology
Faculty of Applied Sciences
University of Sri Jayawardenepura
Gangodawila, Nugegoda

..
Professor K. K. D. S. Ranaweera
Professor of Food Science & Technology
Department of Food Science & Technology
Faculty of Applied Sciences
University of Sri Jayawardenepura
Gangodawila, Nugegoda
We certify that the candidate is submitting this thesis with all corrections, additions and amendments attended in accordance with the comments and suggestions by the examiners.

Professor Arthur Bamunuarachchi
Emeritus Professor
Professor of Applied Chemistry
Department of Food Science & Technology
Faculty of Applied Sciences
University of Sri Jayawardenepura
Gangodawila, Nugegoda

Professor K. K. D. S. Ranaweera
Professor of Food Science & Technology
Department of Food Science & Technology
Faculty of Applied Sciences
University of Sri Jayawardenepura
Gangodawila, Nugegoda
AFFECTIONATELY
DEDICATED TO
MY PARENTS,
TEACHERS,
WIFE NAFeELA
AND
DAUGHTERS
MANAAL & MALEEJ
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE OF CONTENTS</td>
<td>i</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>viii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xi</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>xiv</td>
</tr>
</tbody>
</table>

CHAPTER 1: INTRODUCTION

CHAPTER 2: REVIEW OF LITERATURE

2.1 Fish oil and its composition

2.1.1 Fish oils

2.1.2 Nutritive value of fish and fish oil

2.1.2.1 Vitamins

2.1.2.2 Minerals

2.1.2.3 Calorific values

2.1.3 Fatty acid composition of fish oil

2.1.4 Essential fatty acids (EFAs)

2.1.5 n-3 Fatty acids

2.1.5.1 Eicosapentaenoic acid (EPA, 20:5 n-3)

2.1.5.2 Docosahexaenoic acid (DHA, 22:6 n-3)

2.1.5.3 Docosapentaenoic acid -DPA (22:5 n-3)

2.1.6 Marine and freshwater fish oil

2.1.7 Cholesterol

2.2 Metabolic pathways

2.2.1 Metabolic synthesis of PUFAs

2.2.2 Metabolic synthesis of eicosanoids

2.2.3 Fish oil supplementation

2.2.4 Recommended dietary allowance of fish oil

2.2.5 n-3/n-6 Ratio

2.3 Fish production

2.3.1 World fisheries scenario

2.3.2 Scenario of fish production of South Asian countries

2.3.3 Fish production in Sri Lankan

2.3.4 Fisheries sector in the economy of Sri Lanka
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.5 Inland and aquaculture fishery of Sri Lanka</td>
<td>56</td>
</tr>
<tr>
<td>2.3.5.1 Inland and aquaculture fish production</td>
<td>56</td>
</tr>
<tr>
<td>2.3.5.2 Tilapia fish production</td>
<td>57</td>
</tr>
<tr>
<td>2.3.5.3 Nutritional facts of tilapia</td>
<td>60</td>
</tr>
<tr>
<td>2.3.5.4 Maturity stage of Tilapia</td>
<td>60</td>
</tr>
<tr>
<td>2.3.5.5 Underutilized fish species</td>
<td>61</td>
</tr>
<tr>
<td>2.3.5.6 Freshwater bodies of Sri Lanka</td>
<td>62</td>
</tr>
<tr>
<td>2.4 Climatic conditions of Sri Lanka</td>
<td>63</td>
</tr>
<tr>
<td>2.4.1 Climatic seasons</td>
<td>63</td>
</tr>
<tr>
<td>2.4.2 Climatic zones of Sri Lanka</td>
<td>64</td>
</tr>
<tr>
<td>2.5 method of fish processing</td>
<td>66</td>
</tr>
<tr>
<td>2.5.1 Thermal processing</td>
<td>66</td>
</tr>
<tr>
<td>2.5.1.1 Smoking</td>
<td>66</td>
</tr>
<tr>
<td>2.5.1.2 Boiling</td>
<td>67</td>
</tr>
<tr>
<td>2.5.1.3 Frying</td>
<td>69</td>
</tr>
<tr>
<td>CHAPTER 03: MATERIALS AND METHOD</td>
<td>71</td>
</tr>
<tr>
<td>3.1 The effect of maturity variation on proximate composition</td>
<td>71</td>
</tr>
<tr>
<td>3.1.1 Estimation of moisture content (AOAC, 1980a)</td>
<td>72</td>
</tr>
<tr>
<td>3.1.1.1 Materials</td>
<td>72</td>
</tr>
<tr>
<td>3.1.1.2 Method</td>
<td>72</td>
</tr>
<tr>
<td>3.1.2 Estimation of ash content (AOAC, 1980b)</td>
<td>73</td>
</tr>
<tr>
<td>3.1.2.1 Materials</td>
<td>73</td>
</tr>
<tr>
<td>3.1.2.2 Method</td>
<td>73</td>
</tr>
<tr>
<td>3.1.3 Estimation of fat content- (Bligh and Dyer, 1959)</td>
<td>74</td>
</tr>
<tr>
<td>3.1.3.1 Materials</td>
<td>74</td>
</tr>
<tr>
<td>3.1.3.2 Method</td>
<td>75</td>
</tr>
<tr>
<td>3.2 The effect of geographical distribution on proximate composition</td>
<td>75</td>
</tr>
<tr>
<td>3.2.1 Estimation of Moisture content</td>
<td>77</td>
</tr>
<tr>
<td>3.2.1.1 Materials</td>
<td>77</td>
</tr>
<tr>
<td>3.2.1.2 Method</td>
<td>77</td>
</tr>
<tr>
<td>3.2.2 Estimation of Ash content</td>
<td>77</td>
</tr>
<tr>
<td>3.2.2.1 Materials</td>
<td>77</td>
</tr>
<tr>
<td>3.2.2.2 Method</td>
<td>77</td>
</tr>
<tr>
<td>3.2.3 Estimation of Fat content</td>
<td>77</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>3.2.3.1 Materials</td>
<td>77</td>
</tr>
<tr>
<td>3.2.3.2 Method</td>
<td>77</td>
</tr>
<tr>
<td>3.3 The effect of seasonal variation on proximate composition</td>
<td>77</td>
</tr>
<tr>
<td>3.3.1 Estimation of Moisture content</td>
<td>78</td>
</tr>
<tr>
<td>3.3.1.1 Materials</td>
<td>78</td>
</tr>
<tr>
<td>3.3.1.2 Method</td>
<td>78</td>
</tr>
<tr>
<td>3.3.2 Estimation of Ash content</td>
<td>78</td>
</tr>
<tr>
<td>3.3.2.1 Materials</td>
<td>78</td>
</tr>
<tr>
<td>3.3.2.2 Method</td>
<td>79</td>
</tr>
<tr>
<td>3.3.3 Estimation of Fat content</td>
<td>79</td>
</tr>
<tr>
<td>3.3.3.1 Materials</td>
<td>79</td>
</tr>
<tr>
<td>3.3.3.2 Method</td>
<td>79</td>
</tr>
<tr>
<td>3.4 The effect of different processing method on proximate composition</td>
<td>79</td>
</tr>
<tr>
<td>3.4.1 The effect of smoking on Moisture content</td>
<td>82</td>
</tr>
<tr>
<td>3.4.1.1 Materials</td>
<td>82</td>
</tr>
<tr>
<td>3.4.1.2 Method</td>
<td>82</td>
</tr>
<tr>
<td>3.4.2 The effect of smoking on Ash content</td>
<td>82</td>
</tr>
<tr>
<td>3.4.2.1 Materials</td>
<td>82</td>
</tr>
<tr>
<td>3.4.2.2 Method</td>
<td>82</td>
</tr>
<tr>
<td>3.4.3 The effect of smoking on Fat content</td>
<td>82</td>
</tr>
<tr>
<td>3.4.3.1 Materials</td>
<td>82</td>
</tr>
<tr>
<td>3.4.3.2 Method</td>
<td>82</td>
</tr>
<tr>
<td>3.4.5 The effect of boiling on moisture content</td>
<td>82</td>
</tr>
<tr>
<td>3.4.5.1 Materials</td>
<td>82</td>
</tr>
<tr>
<td>3.4.5.2 Method</td>
<td>82</td>
</tr>
<tr>
<td>3.4.6 The effect of boiling on ash content</td>
<td>82</td>
</tr>
<tr>
<td>3.4.6.1 Materials</td>
<td>82</td>
</tr>
<tr>
<td>3.4.6.2 Method</td>
<td>82</td>
</tr>
<tr>
<td>3.4.7 The effect of boiling on fat content</td>
<td>83</td>
</tr>
<tr>
<td>3.4.7.1 Materials</td>
<td>83</td>
</tr>
<tr>
<td>3.4.7.2 Method</td>
<td>83</td>
</tr>
<tr>
<td>3.4.8 The effect of frying on moisture content</td>
<td>83</td>
</tr>
<tr>
<td>3.4.8.1 Materials</td>
<td>83</td>
</tr>
<tr>
<td>3.4.8.2 Method</td>
<td>83</td>
</tr>
</tbody>
</table>
3.4.9 The effect of frying on ash content
 3.4.9.1 Materials
 3.4.9.2 Method
3.4.10 The effect of frying on fat content
 3.4.10.1 Materials
 3.4.10.2 Method
3.5 Effect of maturity variation on fatty acid composition (AOCS, 1992)
 3.5.1 Materials
 3.5.2 Method
 3.5.2.1 Preparation of Solutions
 3.5.2.2 Preparation of fatty acid methyl esters (FAME)
 3.5.2.3 Injecting the FAME into GC-MS
 3.5.3 Statistical analyses
3.6 Effect of geographical distribution on fatty acid composition
 3.6.1 Materials
 3.6.2 Method
 3.6.3 Statistical analyses
3.7 Effect of seasonal variation on fatty acid composition
 3.7.1 Materials
 3.7.2 Method
 3.7.3 Statistical analyses
3.8 Effect of different processing method on fatty acid composition.
 3.8.1 Effect of smoking on fatty acid composition
 3.8.1.1 Materials
 3.8.1.2 Method
 3.8.2 Effect of boiling on fatty acid composition
 3.8.2.1 Materials
 3.8.2.2 Method
 3.8.3 Effect of frying on fatty acid composition
 3.8.3.1 Materials
 3.8.3.2 Method
 3.8.3.3 Statistical analysis
CHAPTER 04: RESULTS AND DISCUSSION
4.1 The effect of maturity variation on proximate composition
4.1.1 Moisture content 90
4.1.2 Ash content 94
4.1.3 Fat content 96

4.2 The effect of geographical distribution on proximate composition 102
4.2.1 Moisture content 102
4.2.2 Ash content 104
4.2.3 Fat content 106

4.3 Effect of seasonal variation on proximate composition 108
4.3.1 Moisture content 108
4.3.2 Ash content 113
4.3.3 Fat content 115

4.4 The effect of different processing method on proximate composition 118
4.4.1 The effect of smoking process on moisture content 118
4.4.2 The effect of smoking process on ash content 120
4.4.3 The effect of smoking process on fat content 121
4.4.4 The effect of boiling (cooking) process on moisture content 121
4.4.5 The effect of boiling (cooking) process on ash content 124
4.4.6 The effect of boiling (cooking) process on fat content 125
4.4.7 The effect of frying process on moisture content 126
4.4.8 The effect of frying process on ash content 129
4.4.9 The effect of frying process on fat content 130

4.5 Effect of maturity variation on fatty acid composition 132
4.6 Effect of geographical distribution on fatty acid composition 145
4.7 The effect of seasonal variation on fatty acid composition 161
4.8 The effect of different processing method on fatty acid composition 175
4.8.1 The effect of smoking on fatty acid composition 178
4.8.2 The effect of boiling on fatty acid composition 180
4.8.3 The effect of frying on fatty acid composition 185

CHAPTER 05: CONCLUSION 191
REFERENCES 198
APPENDICES i - xi
LIST OF TABLES

Table 2.1: Lipid categories and typical examples 7
Table 2.2: Nutritionally important n-6 PUFAs 12
Table 2.3: Nutritionally important n-3 PUFAs 13
Table 2.4: Total fat, EPA and DHA content of different fish species 23
 (g/100g)
Table 2.5: Physiological actions of eicosanoids derived from AA (20:4 n-6) 40
Table 2.6: Physiological actions of eicosanoids derived from EPA 41
 (20:5 n-3) and DHA (22:6 n-3)
Table 2.7: Recommendations for fish and/or EPA+DHA intakes for healthy 46
 adults from government and health organizations worldwide
Table 2.8: World fisheries and aquaculture production and 51
 utilization (Million Tons)
Table 2.9: Annual fish production by different sub sector 54
Table 2.10: Nutritional data of Tilapia fish 60
Table 2.11: Climatic seasons of Sri Lanka 63
Table 2.12: The principal and sub-climatic zones of Sri Lanka 65
Table 3.1: Biometric data of O.niloticus of maturity variation 71
Table 3.2: Biometric data of O. niloticus of geographical distribution 76
Table 3.3: Biometric data of O. niloticus of seasonal variation 78
Table 4.1.1.1: The percent proximate composition of fish at different 91
 maturity stages (Mean ± SD, n = 5, Wet weight basis)
Table 4.2.1.1: The percent proximate composition of O.niloticus of 103
 geographical distribution (Wet weight basis)
Table 4.3.1: The percent proximate composition of seasonal study (Wet weight basis)

Table 4.4.1: The percent proximate composition of *O. niloticus* flesh treated with different processing methods (Mean ± SD, n=4, 2 specimen per each stage)

Table 4.5.1: The percent fatty acid composition of maturity stages

Table 4.6.1: The per cent individual fatty acid of geographical distribution

Table 4.6.2: The percent group fatty acids of geographical distribution

Table 4.7.1: The per cent individual fatty acid of seasonal variation (Mean ± SD)

Table 4.7.2: The percent total group fatty acid contents of different seasons

Table 4.8.1: The per cent total group fatty acid of processing methods
LIST OF FIGURES

Figure: 2.1 Major producers of world fish body oil 10
Figure: 2.2 Chemical structure of Linoleic acid (LA, 18:2 n-6) 18
Figure: 2.3 Chemical structure of Alpha linolenic acid (ALA, 18:3 n-3) 18
Figure: 2.4 Chemical structure of Eicosapentaenoic acids (EPA, 20:5 n-3) 22
Figure: 2.5 Chemical structure of Docosahexaenoic acid (DHA, 22:6 n-3) 24
Figure: 2.6 Chemical structure of Docosapentaenoic acid (DPA, 22:5 n-3) 26
Figure: 2.7 Chemical structure of cholesterol 30
Figure: 2.8 Metabolic pathways of dietary n-6 and n-3 PUFAs 32
Figure: 2.9 Eicosanoid formation from AA via the COX and 5-LOX pathways 35
Figure: 2.10 Eicosanoid formation from EPA via the COX) and (5-LOX) pathways 37
Figure: 2.11 Metabolic pathways for the conversion of EPA and DHA to resolvin and protectins 38
Figure: 2.12 Fish production of SouthAsianCountries-1990 and 2010 53
Figure: 2.13 Quantity and value of fish and fishery products export - 2011 56
Figure: 2.14 Inland and Aquaculture fish production by major species 59
Figure: 2.15 Main climatic zones of Sri Lanka 64
Figure: 4.1.1.1 Moisture contents of O. niloticus of maturity stages 93
Figure: 4.1.2.1 Ash content of O.niloticus of maturity stages 95
Figure: 4.1.3.1 The proximate composition of O. niloticus of maturity stages 97
Figure: 4.1.3.2 The percent fat content of O.niloticus at different maturity stages 98
Figure: 4.2.1.1 The percent proximate composition of *O. niloticus* of geographical distribution (Wet weight basis)

Figure: 4.2.1.2 The percent moisture content of *O. niloticus* of geographical distribution

Figure: 4.2.2.1 The percent ash contents of *O. niloticus* of geographical distribution (Wet weight basis)

Figure: 4.2.3.1 The percent fat contents of *O. niloticus* of geographical distribution (Wet weight basis)

Figure: 4.3.1.1 The percent moisture contents of *O. niloticus* of seasonal variation

Figure: 4.3.1.2 Proximate composition of *O. niloticus* of seasonal variation

Figure: 4.3.2.1 The percent ash contents of *O. niloticus* of seasonal variation

Figure: 4.3.3.1 The percent fat contents of *O. niloticus* of seasonal variation

Figure: 4.4.1.1 The effect of processing methods on proximate composition of *O. niloticus*

Figure: 4.4.1.2 The effect of smoking process on moisture, ash and fat content of *O. niloticus*

Figure: 4.4.4.1 The effect of boiling process on moisture, ash and fat contents of *O. niloticus*

Figure: 4.4.7.1 The effect of frying process on moisture, ash and fat contents of *O. niloticus*

Figure: 4.5.1 The percent fatty acid compositions of maturity stages

Figure: 4.6.1 The percent group fatty acid contents of geographical distribution

Figure: 4.7.1 The percent total group fatty acid content of seasonal variation

Figure: 4.8.1 The percent total group fatty acid of processing methods

Figure: 4.8.1.1 The effect of smoking on fatty acid composition

Figure: 4.8.2.1 The effect of boiling on fatty acid composition

Figure: 4.8.3.1 The effect of frying on fatty acid compositions
ACKNOWLEDGEMENT

I wish to express my sincere thanks to Dr (Mrs) Yasmina Sultanbawa (Presently in Australia), former Senior Research Officer, Industrial Technology Institute (ITI), for seeking financial support from the National Science Foundation for me to undertake this research project.

I also wish to express my deepest gratitude to Emeritus Prof. Arthur Bamunuarchchi, Professor of Applied Chemistry, Department of Food Science & Technology, Faculty of Applied Sciences, University of Sri Jayawardenepura, for his willingness to supervise, provide invaluable guidance, advice, encouragement, through this study and for reading the manuscript and sparing his time in bringing this endeavor to a successful completion.

I wish to express my sincere gratitude to Professor. K. K. D. S. Ranaweera, (Director, Bandaranaike Ayurvedic Research Institute, Navinna, Sri Lanka), Department of Food Science & Technology, Faculty of Applied Sciences, University of Sri Jayawardenepura, for his invaluable guidance, support, and advice.

Further, my sincere thanks are extended to Dr (Mrs) Indira Wickramasinghe, Head, Department of Food Science & Technology, Faculty of Applied Sciences, University of Sri Jayawardenepura, for her invaluable guidance, support, advice and assistance during this study period.

I also wish to thank Dr. Ranjith Edirisinghe, (formerly Senior Research Officer, NARA), presently Senior Lecturer, Faculty of Science, Rajarata University of Sri Lanka, for his assistance and support for this study.

My thanks are also offered to Professor (Mrs) Shiromi Samarasinghe, Head, Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayawardenepura, for granting permission to use the GC-MS facility to complete this work.

I am also thankful to Mr. S. Dharmesh, Development Officer, Ministry of Technology and Research, Colombo-3, for assisting me in preparing the thesis with computer application.

I would also like to thank all the academic and non academic staff members of the Department of Food Science & Technology, Faculty of Applied Sciences, University of Sri Jayawardenepura, for their kind assistance and support throughout this study.

I greatly remember and value the morale support from my family that gave me continuous encouragement to complete this work to a success. My heartfelt thanks to my wife, Sithy Nafeela and ever loving daughters Manaal and Maleej for bearing my absence during this period.
LIST OF ABBREVIATIONS

AA - Arachidonic Acid
AHA - American Heart Association
AI - Adequate Intake
ALA - Alpha Linolenic Acid
BP - Blood Pressure
CAD - Coronary Artery Disease
CHD - Coronary Heart Disease
COX - Cyclooxygenase
DAG - Diacylglyceride
DHA - Docosahexaenoic Acid
DHGLA - Dihomo Gamma Linolenic Acid
DPA - Docosapentaenoic Acid
DRI - Daily Recommended Intake
DTA - Docosatetraenoic Acid
EDB - Export Development Board
EFA - Essential Fatty Acid
EPA - Eicosapentaenoic Acid
FADS - Fatty Acid Desaturase
FA - Fatty Acid
FAME - Fatty Acid Methyl Ester
FAO - Food and Agriculture Organization
FDA - Food and Drug Administration
GC-MS - Gas Chromatography- Mass Spectrometry
GDP - Gross Domestic Product
GLA - Gamma Linolenic Acid
HDL-C - High Density Lipoprotein-Cholesterol
HEPE - Hydroxyeicosapentaenoic Acid
HETE - Hydroxyeicosatetraenoic Acid
HPEPE-Hydroperoxyeicosapentaenoic Acid
HPETE - Hydroperoxyeicosatetraenoic Acid
HUFA - Highly Unsaturated Fatty Acid
IBD - Inflammatory Bowel Disease
IL - Interleukin
IOM - Institute of Medicine
IQ - Intelligence Quotient
LA - Linoleic Acid
LC - Long Chain
LC-PUFA - Long Chain Polyunsaturated Fatty Acids
LDL-C - Low Density Lipoprotein-Cholesterol
LOX - Lipoxygenase
LT - Leukotriene
MAG - Monoacylglyceride
MFARD - Ministry of Fisheries and Aquatic Resources Development
MI - Myocardial Infarction
NAQDA - National Aquaculture Development Authority
PG - Prostaglandin
PL - Phospholipid
PUFA - Polyunsaturated Fatty Acids
RDA - Recommended Dietary Allowance
SCD - Sudden Cardiac Death
SCFA - Short Chain Fatty Acid
SDA - Stearidonic Acid
SFA - Saturated Fatty Acid
TAG - Triacylglyceride
TX - Thromboxane
UK - United Kingdom
US - United States

VLDL-C - Very Low Density Lipoprotein-Cholesterol

WHO - World Health Organization
Study on the effect of maturity, geographical location, seasonal variation and processing method on fatty acid profile of Tilapia

Udumalebbe Abdul Majeed

ABSTRACT

Tilapia (*Oreochromis niloticus*) is a freshwater fish species that is widely cultured and frequently consumed in Sri Lanka. It is a good source of proteins and health improving fatty acids.

A study was carried out to investigate the impact of maturity stages (six maturity stages, weight ranging from (97.50 ± 2.12 g to 543.00 ± 12.72 g), geographical distribution, seasonal effects and processing methods on proximate composition and fatty acid profiles of Nile tilapia (*O. niloticus*) fillets. For maturity variation, six different sized groups of samples were selected. For assessing the effect of geographical distribution, samples were collected from two different locations, namely, Bandarawela (Wet zone) and Mannar (Dry zone). For studying the seasonal variation, the samples were collected at one month interval over a period of six consecutive months. Smoking, boiling, and frying (in virgin coconut oil) were adopted as processing methods and compared with raw samples.

The proximate composition was assessed as described in the AOAC (1984) and the oil from Tilapia fillets was extracted according to (Bligh and Dyer, 1959). The preparation of fatty acid methyl esters (FAME) and the analysis of GC-MS were done according to (AOCS, 1992).

Proximate values of nutrients namely moisture, ash and fat contents showed a significant variation with maturity stage, geographical location, season and processing.
method. Significant variation (p<0.05) was observed only in n-6 FAs and n-3/n-6 ratio with respect to maturity stage. Significant variations (p<0.05) were observed in PUFAs, n-3 FAs and EPA+DHA content with respect to time (January, February and March, 2013), whereas no significant variation (p>0.1) was observed with respect to geographical locations. Significant variation (p<0.1) was observed in SFAs with respect to geographical locations, while not (p>0.1) with respect to time (January, February and March, 2013). No significant variations (p>0.1) were observed in MUFAs, n-6 FAs and n-3/n-6 ratio with respect to both geographical location and time as well. Significant variation (p<0.05) was observed in SFAs, MUFAs, PUFAs, n-3 FAs, EPA+DHA and n-3/n-6 ratio with respect to season, whereas, no significant variation was observed in n-6 FAs. Significant variations (p<0.05) were observed in PUFAs, n-3 FAs, EPA+DHA and n-3/n-6 ratio, SFAs (p<0.1) and MUFAs (p<0.1) with respect to processing methods, whereas no significant variation (p>0.1) was observed in n-6 FAs. Marginal variations in FAs were observed in smoking and boiling process, whereas, significant variations in FAs were observed in frying process. Frying in coconut oil significantly reduced the health beneficial n-3 FAs such as EPA and DHA.

Since the study showed significant variations with respect to maturity, geographical location and seasonal variation, it is suggested that Tilapia is reared in ponds under controlled conditions so that the highest benefits with respect to protein content and health beneficial fatty acids are obtained.