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SUPPRESSION OF RECOMBINATION CHANNELS OF DYE— 

SENSITIZED SOLAR CELLS BY INCORPORATING NANO- 

PARTICLES OF METALS AND INSULATORS TO THE 

SEMICONDUCTOR FILM 

GONIYA MALIMAGE LASANTHA PRIYANITH APONSU 

In the conversion of solar energy into electricity, devices made of high band gap semiconductor 

materials are more stable comparable to those made of low band gap semiconductor materials. 

However, under these circumstances, an efficient absorber material is very essential. In this 

work, particular dye (Indoline) as a sensitizer and high band gap semiconductors such as Ti02  

and Sn02  were utilized in the construction of dye—sensitized solar cells. 

The performance of dye—sensitized solar cells based on Sn02 film  is inferior due to 

existing of shallow trap levels belong to it. On the other hand, the existing of these defects on 

Ti02  film is minimum and hence, improvement of cell performance based on composite systems 

becomes marginal for Ti02  semiconductor. However, the efficiency of indoline-149 sensitized 

photoelectrochemical solar cells increases significantly when the nanocrystalline Ti02  is doped 

with Cu to a concentration similar to the dye concentration. lndoline-149 possesses sulfur in 

rhodanine rings in addition to carboxylate ligand. Therefore, sulfur in rhodanine rings of 

indoliiie-149 too could coordinate with copper in Ti02  in addition to the anchoring of this dye 

to Ti02  surface via the carboxylate ligand. And hence it suppresses the aggregation of the dye 

molecules. The firm bonding of the indoline-149 molecule to the Ti02  surface at two points 

xv 



covers TiO2  surface without leaving any voids. Therefore, suppression of recombination 

through these voids may increase both photovoltage as well as photocurrent. 

Depositing nano—particles of gold on Sn02  particles showed enhancement of both 

photovoltage as well as photocurrent. As many articles in literature claims, the surface plasmon 

resonance of the gold nano—particles deposited on semiconductors enhances the performance 

of the dye—sensitized solar cells accompanied by an increment of photocurrent. Since the 

above device improves photovoltage as well, it is realized that in addition to the surface 

plasmon resonance effect, there may be several factors which dominates the mechanism of this 

device. The Fermi level of Sn02  particles rises when it is in contact with a metal having lower 

work function. Since the particles are in nano—range, to achieve the equalization of Fermi 

levels of gold and Sn02  particles, the potential of the conduction band edge of Sn02  rises up 

together with the shallow traps. This will result to suppress the recombination of germinated 

electrons with acceptors in electrolyte which increases the photocurrent. The shift of the 

conduction band edge to a higher level attributes to higher photovoltage as well. 

Zr02  is an insulating material with its energy gap in between 5-7 eV. Suppression of 

recombination processes through the incorporation of the insulating material, Zr02  improved 

cell performance significantly. Many articles in literature revealed that the enhancement of the 

photocurrent is impossible in coupled type heterostructures formed between insulator and 

semiconductor. And therefore, the formation of Zr02  shell around the Sn02  crystallites in the 

[Sn02] Zr02  (capped type heterostructures) can not be ruled out in this regard. This Zr02  shell 

around Sn02  prevents the recombination of germinated electrons with acceptors in electrolyte. 

And accumulation of these electrons in Sn02  particles rises up quasi—Fermi level (QFL) of the 

[S1102] Zr02  composite. This will attributes to higher photovoltage and photocurrent of the cell. 
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