SUPPRESSION OF RECOMBINATION CHANNELS OF DYE–SENSITIZED SOLAR CELLS BY INCORPORATING NANO-PARTICLES OF METALS AND INSULATORS TO THE SEMICONDUCTOR FILM

By

GONIYA MALIMAGE LASANTHA PRIYANITH APONSU

Ph. D.

2009

SUPPRESSION OF RECOMBINATION CHANNELS OF DYE–SENSITIZED SOLAR CELLS BY INCORPORATING NANO-PARTICLES OF METALS AND INSULATORS TO THE SEMICONDUCTOR FILM

By

GONIYA MALIMAGE LASANTHA PRIYANITH APONSU

Thesis submitted to the University of Sri Jayewardenepura for the award of the Degree of Doctor of Philosophy in chemistry on 2009.

DECLARATION

"The work described in this thesis was carried out by me under the supervision of Prof. K. Tennakone, Director (former), Institute of Fundamental Studies, Hanthana Road, Kandy and Prof. Pradeep Jayaweera, Professor in Chemistry, Department of Chemistry, University of Sri Jayewardenepura, Nugegoda and a report on this has not been submitted in whole or in part to any university or any other institute for another Degree/Diploma".

Larant

Signature of the candidate

"We certify that the above statement made by the candidate is true and that thesis is suitable for submission to the University for the purpose of evaluation".

Prof. K. Tennakone, Director (former), Institute of Fundamental Studies, Hanthana Road, Kandy.

Prof. Pradeep Jayaweera Senior Lecturer, Department of Chemistry, University of Sri Jayawardanapura Nugegoda.

TABLE OF CONTENTS

	Page
LIST OF CONTENTS	(i)
LIST OF FIGURES	(vi)
LIST OF TABLES	(xii)
ACKNOWLEGEMENTS	(xiv)
ABSTRACT	(xv)

CHAPTER 1

SOLA	AR CELLS	
1.1	Introduction	1
1.2	History	4
1.3	Thin Film Solar Cell Technology	6
1.4	Synthesis and Preparation of Semiconductor Films	6
	1.4.1 Gas Phase Synthesis of Semiconductor Films	7
	1.4.1.1 Physical Vapour Deposition (PVD)	7
	1.4.1.2 Chemical Vapour Deposition (CVD)	7
	1.4.1.3 Molecular Beam Epitaxy (MBE)	8
	1.4.1.4. Sputtering	9
	1.4.2 Liquid Phase Synthesis of Semiconductor Films	9
	1.4.2.1 Chemical Deposition	10
	1.4.2.2 Electrochemical Deposition	10
	1.4.1.3 Spray Pyrolysis Deposition (SPD)	10

	1.4	4.2.4 Sol–gel Method	11
1.5	Fund	amentals of Photovoltaic Conversion	12
	1.5.1	Semiconductor Materials	12
	1.5.2	Electron-hole Concentration and Fermi level	13
	1.5.3	p–n Junction	19
	1.5.4	Interfaces	26
		1.5.4.1 Homo-junction	27
		1.5.4.2 Schottky-junction	28
		1.5.4.3 Hetero-junction	31
	1.5.5	Composite Semiconductor Nano-cluster and Quantum well	31

CHAPTER 2

DYE-SENSITIZATION

2.1	Intro	duction	35
2.2	Histor	ry	36
2.3	Theor	retical Aspect of Dye-sensitization	37
2.4	Dye-sensitized Photovoltaic Solar Cells		40
	2.4.1	Dye-sensitized Solid-state Photovoltaic Solar Cells	41
	2.4.2	Dye-sensitized Photo-electrochemical Solar Cells	43
2.5	Hot C	arrier Generation in Dye–sensitized Process	45

CHAPTER 3

EXPERIMENTAL TECHNIQUES

3.1	Film Deposition Methods	47
3.2	Film Thickness	47
3.3	Determination of Crystalline Structure and Crystalline Size	48
3.4	Calculation of the Particle Size of Powders	48
3.5	Calculation of Roughness Factor and Porosity	49
	3.5.1 Roughness Factor	49
	3.5.2 Porosity	50
3.6	Finding the Band Gap and Band Edge Position	51
	3.6.1 Band Gap	51
	3.6.2 Band Edge	51
3.7	Transient Photocurrent	53
3.8	Fluorescence Spectrum	53
3.9	Fourier Transform Infrared (FTIR) Spectroscopy	54
3.10	Dark I-V Measurements	55

CHAPTER 4

ENHANCEMENT OF PHOTOVOLTAIC EFFECTS OF INDOLINE –SENSITIZED SOLAR CELL OF NANO–CRYSTALLINE TiO₂ SURFACE DOPED WITH COPPER

4.1	Introduction	57
4.2	Experimental Details	58
4.3	Results and Discussion	59
4.4	Conclusions	72

CHAPTER 5

EFFECTS OF GOLD NANO-PARTICLES ON THE PHOTOVOLTAIC PROPERTIES OF DYE-SENSITIZED SOLAR CELLS OF SnO₂ FILMS

5.1	Introduction	74
5.2	Experimental Details	76
5.3	Results and Discussion	78
5.4	Conclusions	85

CHAPTER 6

SUPPRESSION OF RECOMBINATION CHANNELS OF DYE-SENSITIZED PHOTO-ELECTROCHEMICAL SOLAR CELLS MADE FROM SnO₂ FILMS BY INCORPORATION OF ZrO₂

6.1	Introduction	87
6.2	Experimental Details	90
6.3	Results and Discussion	91
6.4	Conclusions	101

CHAPTER 7

SUMMARY AND SUGGESTIONS FOR FUTURE WORK

7.1	Summary	103
7.2	Suggestions for Future Work	105

REFERENCES

APPENDIX 1 –LIST OF PUBLICATIONS AND COMMUNICATIONS

FROM THESIS

107

112

LIST OF FIGURES

Figure 1.1	Schematic diagram of MBE system	8
Figure 1.2	Illustration of gel formation and precipitation from a sol.	11
Figure 1.3	Size quantization effect. Discrete molecular electronic levels gradually	/
	convert into energy bands with increasing particle size.	14
Figure 1.4	Energy level diagrams for semiconductors	
	(a) An intrinsic semiconductor,	
	(b) Extrinsic n-type with electron donor imperfection level E_D ,	
	and	
	(c) Extrinsic p-type with electron acceptor imperfection level E_A .	16
Figure 1.5	(a) Energy band structure of a p-n junction, (b) reverse-biased condition	,
	and (c) forward-biased condition of a p-n junction.	20
Figure 1.6	Typical current-voltage characteristic of a solar cell under (a) dark, and	
	(b) illuminated conditions.	22
Figure 1.7	Equivalent circuit of a solar cell.	25
Figure 1.8	The effect of series resistance (R_s) on the current voltage curve for solar	
	cells	25

Page

- Figure 1.9 The effect of shunt resistance (R_{sh}) on the current voltage curve for solar 26 cells. 28 Figure 1.10 Formation of a homo-junction. Figure 1.11 Metal semiconductor interfaces (a) for metal/semiconductor contact when $\Phi_m > \Phi_s$ (schottky-junction) (b) for the metal/ semiconductor contact when $\Phi_m < \Phi_s$ 30 (ohmic-contact) 31 Figure 1.12 Formation of a hetero-junction. Figure 1.13 Quantum well formed by sandwiching a thin layer of low band gap semiconductor between two layers of high band gap semiconductors. 32 Figure 1.14 Transportation of high energetic electrons and holes penetrating 33 through the narrow barrier.
 - Figure 1.15 Nano-cluster composite structures with (a) capped semiconductors (b) coupled semiconductors. 34
 - Figure 2.1 Mechanism of dye-sensitization (a) Anodic sensitization, and (b)

 Cathodic sensitization.
 38

Figure 2.2	Mechanism of photocurrent generation in dye-sensitized solid-state photovoltaic solar cell.	42
Figure 2.3	Mechanism of photocurrent generation in dye-sensitized photo- electrochemical solar cell.	44
Figure 2.4.0	Generation of hot electrons (a) by photo excitation of semiconductor (b by photo excitation of dye molecules attached to the semiconductor.) 46
Figure 3.1	Calibration curve for calculating dye concentration (absorbance measured at 530 nm).	50
Figure 3.2	Experimental set up for band edge measurement	52
Figure 3.3 Figure 4.1	Schematic representation of time resolved photocurrent measurement system. Variation of the efficiency of the cell (1000 W m ⁻² , 1.5 AM	53
	illumination) with the surface concentration of copper atoms on the TiO_2 surface.	61
Figure 4.2	I–V characteristics of indoline 149 sensitized cells constituted of (a) un-doped TiO_2 in the electrolyte without 4- <i>tert</i> butylpyridine (b) TiO_2 optimally doped with Cu in the electrolyte without 4- <i>tert</i> butylpyridin	e

(c) undoped TiO₂ in the electrolyte with 4-*tert* butylpyridine (d) TiO₂ optimally doped with Cu in the electrolyte with 4-*tert* butylpyridine (e) TiO₂ sensitized with indoline D–149 complexed with Cu²⁺ in the electrolyte without 4-*tert* butylpyridine (f) TiO₂ sensitized with indoline D–149 complexed with Cu²⁺ in the electrolyte with 4-*tert* butylpyridine. 62

- Figure 4.3
 Photocurrent action spectrum of the indoline D-149 sensitized cell with (a)

 Cu doped TiO₂ (b) undoped TiO₂.
 64
- Figure 4.4
 Dark I-V characteristics (a) Cu doped cell (b) undoped cell in an electrolyte

 without 4-tert butylpyrid.
 64

Figure 4.5Photovoltage transients of the cells with TiO2 films (a) doped with Cu(b) undoped.65

Figure 4.6Mott-Schottky plots for (a) Cu doped TiO2 and (b) TiO2 (supporting
electrolyte 0.1M Na2SO4).66

Figure 4.7Schematic diagram suggesting the mode of interaction of indolineD-149 with the TiO2 surface.68

Figure 4.8 Absorption spectra of (a) alcoholic solutions of indoline D–149 and (b) the same complexed with copper. 69

- Figure 4.9Variation of (i) efficiency (ii) open-circuit voltage of (a) Cu doped and
(b) un-doped cells with the light intensity.71
- Figure 5.1 Absorption spectra of (a) Indoline D-149 dye and (b) Au/SnO₂ film. 78
- Figure 5.2Action spectra of dye-sensitized electrochemical solar cells made of(a) SnO2 and (b) Au/SnO2 composite films.79
- Figure 5.3I-V characteristic curves of dye-sensitized electrochemical solar cells
made of Au/SnO2 composite films of (a) 0 % (b) 0.9×10^{-3} (c) 1.4×10^{-3}
(d) 1.9×10^{-3} (e) 2.4×10^{-3} of gold by weight, respectively.80
- Figure 5.4Band diagram of (a) SnO2 and Schottky junction of (b) SnO2 and gold(c) SnO2 and gold nano-particle contact.83
- Figure 5.5 Mott-Schottky plots of (a) Au/SnO₂ composite and (b) SnO₂ films, respectively. 84
- Figure 5.6Schematic band diagrams of Au/SnO2 composite to illustrate the
electron transportation through the film.85
- Figure 6.1 I-V characteristic curves of dye-sensitized electrochemical solar cells made of (a) [SnO₂]ZrO₂ composite (ZrO₂, 0.9 % by weight) and (b) bare SnO₂ films, respectively.

- **Figure 6.2** Schematic band diagrams of [SnO₂]ZrO₂ composite to illustrate the electron transportation through the thin barrier film of ZrO₂ towards the FTO back contact with the rising up of QFL (For thin ZrO₂ layer). 94
- Figure 6.3 Mott-Schottky plots of (a) [SnO₂]ZrO₂ composite and (b) SnO₂ films, respectively. 96
- Figure 6.4 Schematic band diagrams of [SnO₂]ZrO₂ composite to illustrate the electron transportation through the thick barrier film of ZrO₂ by hopping electrons over the trap states of ZrO₂ towards the FTO back contact with the rising up of QFL (For thick ZrO₂ layer).
 97
- Figure 6.5 Tunneling of electron from one SnO₂ particle to another SnO₂ particle through (a) a single trap state of thick ZrO₂ layer (b) multiple trap states of very thick ZrO₂ layer.
 98
- Figure 6.6 Emission spectra of (a) Mercurochrome in ethanol (10 μM) and (b)
 ZrO₂ suspended Mercurochrome in ethanol (10 μM) excited
 at 400 nm.
- Figure 6.7
 Schematic diagram illustrating band positions of SnO₂ and ZrO₂,

 excited and ground levels of indoline and mercurochrome dyes and

 redox level of electrolyte.

 100

LIST OF TABLES

Page

- **Table 4.1** I–V parameters (Isc= short-circuit photocurrent, Voc = open-circuit voltage , η = efficiency , FF = fill-factor) of different systems sensitized with indoline D–149. (a) undoped TiO₂ in the electrolyte without 4-*tert* butylpyridine (b) TiO₂ optimally doped with Cu in the electrolyte without 4-*tert* butylpyridine (c) un-doped TiO₂ in the electrolyte with 4-*tert* butylpyridine (d) TiO₂ optimally doped with Cu in the electrolyte with 4-*tert* butylpyridine (e) TiO₂ sensitized with indoline D–149 complexed with Cu²⁺ in the electrolyte without 4-*tert* butylpyridine (f) TiO₂ sensitized with indoline D–149 complexed with Cu²⁺ in the electrolyte with 4-*tert* butylpyridine. 63
- Table 5.1I-V parameters (Isc= short-circuit photocurrent, Voc = open-circuit
voltage , η = efficiency , FF = fill-factor) of different systems
sensitized with indoline D-149. (a) un-doped SnO2 and doped SnO2
of (b) 0.9x10⁻³ (c) 1.4x10⁻³ (d) 1.9x10⁻³ (e) 2.4x10⁻³ of gold by weight,
respectively.81
- Table 6.1I-V parameters (I_{sc} = short-circuit photocurrent, V_{oc} = open-circuitvoltage , η = efficiency , FF = fill-factor) of different systems

sensitized with indoline D-149. (a) bare SnO_2 and capped SnO_2 of (b) 0.7 (c) 0.9 (d) 1.1 (e) 2.2 (f) 4.2 (g) 6.2 (h) 8.2 of ZrO_2 by weight and (i) bare ZrO_2 films, respectively. 93

ACKNOWLEDGEMENTS

I deeply express my appreciations to my external supervisor Prof. K. Tennakoon, Director (former), Institute of Fundamental Studies, Kandy, for his continuous supervision, valuable guidance and keen interest in my work through the research period. And I am grateful to him for his advice given to achieve the Doctor of Philosophy degree successfully.

I also thank sincerely to my internal supervisor Prof. Pradeep Jayaweera, Professor, Department of Chemistry, Faculty of Applied Science, University of Sri Jayewardenepura, Nugegoda for his generous support and continuous attention paid on me in the period of study.

Great thanks are due to my colleagues Y. P. Y. P. Ariyasinghe, T. R. C. K. Wijayarathna, E. V. A. Premalal, P. K. D. D. P. Pitigala and M. K. Indika Senevirathna for their encouragement and moral supports extended to me to accomplish this task.

I cannot forget my wife Menik and my parents for their devotional sacrifices in this task.

I am indeed grateful to the staff members of institute of fundamental studies who help me in various ways during the period of my stay at I. F. S.

SUPPRESSION OF RECOMBINATION CHANNELS OF DYE-SENSITIZED SOLAR CELLS BY INCORPORATING NANO-PARTICLES OF METALS AND INSULATORS TO THE SEMICONDUCTOR FILM

By

GONIYA MALIMAGE LASANTHA PRIYANITH APONSU

ABSTRACT

In the conversion of solar energy into electricity, devices made of high band gap semiconductor materials are more stable comparable to those made of low band gap semiconductor materials. However, under these circumstances, an efficient absorber material is very essential. In this work, particular dye (Indoline) as a sensitizer and high band gap semiconductors such as TiO₂ and SnO₂ were utilized in the construction of dye–sensitized solar cells.

The performance of dye-sensitized solar cells based on SnO_2 film is inferior due to existing of shallow trap levels belong to it. On the other hand, the existing of these defects on TiO₂ film is minimum and hence, improvement of cell performance based on composite systems becomes marginal for TiO₂ semiconductor. However, the efficiency of indoline–149 sensitized photoelectrochemical solar cells increases significantly when the nanocrystalline TiO₂ is doped with Cu to a concentration similar to the dye concentration. Indoline–149 possesses sulfur in rhodanine rings in addition to carboxylate ligand. Therefore, sulfur in rhodanine rings of indoline–149 too could coordinate with copper in TiO₂ in addition to the anchoring of this dye to TiO₂ surface via the carboxylate ligand. And hence it suppresses the aggregation of the dye molecules. The firm bonding of the indoline–149 molecule to the TiO₂ surface at two points covers TiO_2 surface without leaving any voids. Therefore, suppression of recombination through these voids may increase both photovoltage as well as photocurrent.

Depositing nano-particles of gold on SnO₂ particles showed enhancement of both photovoltage as well as photocurrent. As many articles in literature claims, the surface plasmon resonance of the gold nano-particles deposited on semiconductors enhances the performance of the dye-sensitized solar cells accompanied by an increment of photocurrent. Since the above device improves photovoltage as well, it is realized that in addition to the surface plasmon resonance effect, there may be several factors which dominates the mechanism of this device. The Fermi level of SnO₂ particles rises when it is in contact with a metal having lower work function. Since the particles are in nano-range, to achieve the equalization of Fermi levels of gold and SnO₂ particles, the potential of the conduction band edge of SnO₂ rises up together with the shallow traps. This will result to suppress the recombination of germinated electrons with acceptors in electrolyte which increases the photocurrent. The shift of the conduction band edge to a higher level attributes to higher photovoltage as well.

ZrO₂ is an insulating material with its energy gap in between 5–7 eV. Suppression of recombination processes through the incorporation of the insulating material, ZrO₂ improved cell performance significantly. Many articles in literature revealed that the enhancement of the photocurrent is impossible in coupled type heterostructures formed between insulator and semiconductor. And therefore, the formation of ZrO₂ shell around the SnO₂ crystallites in the [SnO₂] ZrO₂ (capped type heterostructures) can not be ruled out in this regard. This ZrO₂ shell around SnO₂ prevents the recombination of germinated electrons with acceptors in electrolyte. And accumulation of these electrons in SnO₂ particles rises up quasi–Fermi level (QFL) of the [SnO₂] ZrO₂ composite. This will attributes to higher photovoltage and photocurrent of the cell.