THE ROLE OF GEOGRAPHICAL INFORMATION SYSTEMS FOR DECISION MAKING IN SRI LANKA ARMY NETWORK CENTRIC WARFARE

By Msc/GIS/2012015 AD RODRIGO

Dissertation submitted to the Department of geography, University of Sri Jayawardanapura as a partial fulfillment of the Degree of Master of Science in Geographic Information Systems and Remote Sensing on 20 June 2014

i

DECLARATION

The work described in this thesis was carried out by me under the supervision of Prof. Krishan Deheragoda, Department of geography, university of sri Jayawardanapura and Mr Prabath Malavige, Teaching faculty member of the M.Sc. degree in GIS and Remote Sensing at Department of geography, University of Sri Jayawardenepura. This has not been submitted in whole or in part to any University or any other institution for another Degree/Diploma.

bf the Candidate

15 06/2014

Date

We certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the University for the purpose of evaluation.

Signature of the main Supervisor

1.....

Signature of the Co-Supervisor

Date

06/08/2014

Date

ABSTRACT

Warfare today is of that Information age and is largely dependent on Information Technology. This has a great influence on correct decision making. Thus information fusion serves as a major component of the Military Decision Making Process (MDMP). The accuracy of the information and its rapid dissemination are the core pillars complimenting information fusion and thereby supporting the MDMP. This phenomenon brings to light that the MDMP is dependent on accuracy and speed. These factors are interrelated and should work in concurrence to achieve synergy in any operation if the desired results are to be achieved. This right combination of GIS over NCW is of course an added value in MDMP which supports it by thinning time out and preserving accuracy. As such it is the driving force in speeding up own Decision and Action Cycle thus providing a competitive advantage over the enemy Decision Cycle. This research discusses on these phenomenon and focus on its potentials to improve MDMP in Sri Lankan context by molding GIS over NCW.

ACKNOWLEDGEMENTS

Firstly, I acknowledge with a great sense of gratitude the encouragement, instructions and the guidance by my supervisors Prof. Krishan Deheragoda, Department of geography, University of Sri Jayawardanapura and Mr. Prabath Malavige, Teaching faculty member of the M.Sc. degree in GIS and Remote Sensing at Department of geography, university of sri Jayawardanapura Their tolerance made me producing this paper in a manner of acceptance.

I wish to extend my sincere thanks to all the Senior Officers who helped me by giving interviews and answers for my questionnaire in spite of their busy schedules. Information collected through those important ventures became the nucleus of my research also special thanks should goes to the Miss K. N. I. Kavirathna who support me to do the analysis part of this research.

Last but not the least, I must thank to my loving wife Lekha for giving me moral courage, strength and support in completing this piece of work.

Table Of Contents

	Title page		1
	Declaration		ii
	Abstract		iii
	Acknowledgments		iv
	Table Of Contents		v
	List of Tables		vii
	List of Figures		xiii
	List of Abbreviations		xi
	Definition of Terms		xii
CHAPTER 1	Introduction		1
	Background of the study		3
	Research Problem		5
	Aim		5
	Objectives of the Study		5
	Hypothesis		5
	Significant of the Study		6
	Methodology		8
	Scope and Limitations		9
	Structure of the research report		10
CHAPTER 2	Literature Review		12
	Command and Control		13
	Military Decision Making Process and		18
	Network Centric Warfare		19
	Geographic Information Systems		24
CHAPTER 3	Methodology		29
 Construction (Theorem 1997) International Construction (Theorem 1997) 	Data Collection		33
	Software and tool used		42
	Data Processing		44

CHAPTER 4	Use Of Geographical Information Systems In	47
	Network Centric Warfare By Sri Lanka Army	
	Data Presentation	47
	Analysis	61
	Case study	72
ř.		
CHAPTER 5	Findings and Discussions	90
	Findings	90
	Discussions	92
	Development	93
	Future Potentials	99
CHAPTER 6	Recommendations and Conclusion	100
	Recommendations	100
	Conclusion	105

Bibliography/ References

106 -109

Annexes: Questionnaire issued

Annex A

LIST OF TABLES

Table 3 – 1	Sample Design and Size	31
Table 3 – 2	Operationalization of the Concept	33
	Collected Data Layers, Scales, Formats and	
Table 3 – 3	the Sources	34
	Domain and Sub Types Assigned to SEA	
Table 3 – 4	Project Locations	37
	Properties of Relationship Classes.	
Table 3 – 5		38
Table 4 – 1	GIS products in Improving Accuracy and	49
	Ease off Planning Constraints	
Table 4 – 2	Critical Questions and Results	72
Table 4 – 3	Derived Expected Values.	73
	Rainfall Distribution and the Assigned Scale	
Table 4 – 4	Factors on Each Class	78
	Land Use Categories and Assigned Scale	
Table 4 – 5	Factors for Each Class.	79
	Distance from Roads and Assigned Scale	
Table 4 – 6	Factors for Each Class	83
Table 4 – 7	Pair Wise Comparison Matrix of Criteria	87
	Analytical Hierarchy Process of Criteria	
Table 4 – 8		88
	Weights Assigned in the Weighted Overlay	
Table 4 – 9	Model	88

LIST OF FIGURES

Figure 2 – 1	Stages of full MDMP	14
Figure 2 – 2	Observation, Orientation, Decision and Action Loop	17
Figure 2 – 3	Elements of Battle Space Awareness	22
Figure 2 – 4	Military Network Centric Enterprises with C2 relation	23
Figure 2 – 5	NCW – Response to Time vs Targets Destroyed	25
Figure 2 – 6	GIS as a critical Network Centric Operation Entity	29
Figure 3 – 1	Conceptualization of the Hypothesis	32
	Graphical Illustration of the Methodology Followed in the	
Figure 3 – 2	Entire Study	40
	The Methodology Followed in the Multi-criteria Weighted	
Figure 3 – 3	Overlay Analysis	41
	The Methodology Used for Analysis to select Most	
Figure $3 - 4$	Suitable areas for Disition Making	42
Figure 4 – 1	GIS awareness of the Respondents	48
Figure $4 - 2$	GIS support towards win over Accuracy	49
Figure $4 - 3$	GIS support towards win over Time	50
Figure 4 – 4	Support of the GIS to C2 and MDMP	51
Figure 4 – 5	Importance of Accuracy in Targeting Process to support MDMP	51
Figure 4 – 6	GIS practical usage as a Planning Tool	52
Figure 4 – 7	GIS potentials over Networks and Present Usage	53
Figure 4 – 8	Need for enhancement of GIS through Networks	53
Figure 4 – 9	NCW awareness of the Samples	54
Figure 4 – 10	NCW and its relation with Communication Networks	55
Figure 4 – 11	Relation of Time and Speed with Communication Networks	56

Figure 4 – 12	Communication Network's contribution to	57
	Military Operations	
Figure 4 – 13	Communication Networks in C2 Environment	57
	belief and usages	
Figure 4 – 14	Data transmission through Communication Networks	58
Figure 4 – 15	Use of Networks for Data Transmission	59
Figure 4 – 16	Present status and requirement	60
Figure 4 – 17	Time and Accuracy – impact on MDMP	61
Figure 4 – 18	Need of an Integrated Network System	62
Figure 4 – 19	Prevalence of GIS use / access	62
Figure 4 – 20	Sample's prospect of GIS as C2 and MDMP component	63
Figure 4 – 21	Influence of GIS to Accuracy in MDMP	63
Figure 4 – 22	Use of GIS in Networked Environment to support MDMP	64
Figure 4 – 23	Comparison of GIS use in Sri Lanka Army	65
Figure 4 – 24	Background knowledge of NCW	65
Figure 4 – 25	Significance of Networks and Networking towards C2	66
Figure 4 – 26	Influence of NCW to win Time in MDMP	66
Figure 4 – 27	Access into Networks for C2 / MDMP	67
Figure 4 – 28	Prevalence of usage of army Networks to transfer data	67
Figure 4 – 29	Comparison of NCW use in Sri Lanka Army	68
Figure 4 – 30	Interdependency of Accuracy and Time	69
Figure 4 – 31	Prospects GIS over Networks for better Accuracy and Time	69
Figure 4 – 32	Present status and need of enhancement in NCW in army	70
Figure 4 – 33	Behaviour of the Variables	71
Figure 4 – 34	Annual Average Rainfall Distribution Pattern in the Study	
	Area- MATHALE Distric	77

Figure 4 – 35Land Use Categories in Study Area	80
Figure 4 – 36 Slope Values in Study Area	81
Figure 4 – 37 Distance from Roads to the Vicinity of the Study Area	83
Figure 4 – 38 Weighted Overlay Model of the Considered Factors	89
Figure 4 – 39 Weighted Overlay Map of the Considered Factors	90
Figure 5 – 1 Sri Lanka Air Force BMCC Architecture	97
Figure 5 – 2 U S Army Battle Command System	99

LIST OF ABBREVIATIONS

1.	Army Battle Command System	-	ABCS
2.	Battle Command Support Environment	-	BCSE
3.	Battle Damage Assessments	-	BDA
4.	Battle Management and Control Center	-	BMCC
5.	Battle Management Language	-	BML
6.	Center for Research and Development		CRD
7.	Command and Control	-	C2
8.	Command, Control, Communication, Computers and Intelligence	-	C4I
9.	Command and Control Warfare		C2W
10.	Commander's Support Environments	-	CSE
11.	Common Operation Picture	-	COP
12.	Communication and Information Systems	-	CIS
13.	Course Of Action	2 	COA
14.	Department of Defence	-	DoD
15.	Digital Elevation Model	_	DEM
16.	Electronic Warfare	5.1	EW

17.	Geographical Information System		GIS
18.	Geoinformation for Static Defence Applications	-	GISDA
19.	Imagery Intelligence	-	IMINT
20.	Information Technology	-	IT
21.	Intelligence Preparation of the Battlefield	-	IPB
22.	Intelligence, Surveillance and Reconnaissance	-	ISR
23.	Military Decision Making Process	-	MDMP
24.	Network Centric Operations	-	NCO
25.	Network Centric Warfare	-	NCW
26.	Operations Security	-2	OPSEC
27.	Precision Engagement	-23	PE
28.	Psychological Operations		PSYOPS
29.	Remote Sensing	-	RS
30.	Tactics, Techniques and Procedures	-	TTPs
31.	Unmanned Aerial Vehicle	-	UAV

xii

DEFINITION OF TERMS

Command and Control (C2). C2, in a military organization can be defined as the exercise of authority and direction by a properly designated commanding officer over assigned and attached forces in the accomplishment of the mission. Further, command and control refers more generally to the maintenance of authority with somewhat more distributed decision making.

Command and Control Warfare (C2W). C2W is integrated use of operations security (OPSEC), military deception, psychological operations (PSYOPS), electronic warfare (EW), and physical destruction, mutually supported by intelligence, to deny information to, influence, degrade, or destroy adversary C2 capabilities, while protecting friendly command and control capabilities against such actions.

Communication and Information Systems (CIS). The CIS is defined as assembly of equipment, methods and procedures and if necessary personnel organized so as to accomplish specific information conveyance and processing function.

Electronic Warfare (EW). EW refers to any action involving the use of the electromagnetic spectrum or directed energy to control the spectrum, attack an enemy, or impede enemy assaults via the spectrum. The purpose of EW is to deny the opponent the advantage of, and ensure friendly unimpeded access to, the EM spectrum. EW can be applied from air, sea, land, and space by manned and unmanned systems, and can target communication, radar, or other services

Geographical Information System (GIS). A geographic information system, geographical information system, or geospatial information system is the system that captures, stores, analyzes, manages, and presents data with reference to geographic location data.

<u>Geoinformatics</u>. Geoinformatics is the science and the technology which develops and uses information science infrastructure to address the problems of geography, geosciences and related branches of engineering.

Information Technology (IT). IT is the acquisition, processing, storage and dissemination of vocal, pictorial, textual and numerical information by a microelectronics-based combination of computing and telecommunications. The term in its modern sense first appeared in a 1958 article published in the Harvard Business Review, in which authors Leavitt and Whisler commented that the new technology does not yet have a single established name.

<u>Military Decision Making Process (MDMP</u>). The MDMP is a single, established, and proven analytical technique. MDMP helps the commander and staffs examine a battlefield situation and reach logical decisions. The commander can decide to use the complete or abbreviated version.

<u>Military Deception</u>. Military deception is an attempt to amplify, or create an artificial fog of war or to mislead the enemy using psychological operations, information warfare and other methods. As a form of strategic use of information (disinformation), it overlaps with psychological warfare. To the degree that any enemy that falls for the deception will lose confidence when it is revealed, he may hesitate when confronted with the truth.

Networking. Network, is a collection of computers, apparatus and devices interconnected by communications channels that facilitate communications among users and allows users to share resources. Networks may be classified according to a wide variety of characteristics. A network allows sharing of resources and information among interconnected devices with greater accuracy, speed and security.

<u>Network Centric Warfare (NCW)</u>. NCW is a new military doctrine or theory of war pioneered by the US Department of Defense. It seeks to translate an information

advantage, enabled in part by IT, into a competitive advantage through the robust networking of well informed geographically dispersed forces. This networking, combined with changes in technology, organization, processes, and people may allow new forms of organizational behaviour.

<u>Network Centric Operations (NCO)</u>. In common usage, NCO is an alternative explanation to NCW. However, NCO is more specifically focus of operations based on Network Centric Environments.

Operations Security (OPSEC). OPSEC is a process that identifies critical information to determine if friendly actions can be observed by adversary intelligence systems, determines if information obtained by adversaries could be interpreted to be useful to them, and then executes selected measures that eliminate or reduce adversary exploitation of friendly critical information.

Psychological Operations (PSYOPS). PSYOPS are planned propaganda operations to convey selected information and indicators to foreign audiences to influence their emotions, motives, objective reasoning, and ultimately the behaviour of foreign governments, organisations, groups, and individuals.

<u>Remote Sensing (RS)</u>. Remote sensing is the small- or large-scale acquisition of information of an object or phenomenon, by the use of either recording or real-time sensing device(s) that are wireless, or not in physical or intimate contact with the object (such as by way of aircraft, spacecraft, satellite, buoy, or ship). In practice, RS is the stand-off collection through the use of a variety of devices for gathering information on a given object or area

Targeting. Targeting is the process of selecting targets and matching the appropriate response to them on the basis of operational requirements, capabilities and limitations.