Zinc and chromium in commonly used food items, intake by Sri Lankan adults and their levels in serum

By

Balapanage Sumith Jayasinghe

M.Phil.

2006

Zinc and chromium in commonly used food items, intake by Sri Lankan adults and their levels in serum

By

Balapanage Sumith Jayasinghe

Thesis submitted to the University of Sri Jayewardenepura for the award of the Degree of Master of Philosophy in Biochemistry on 'Zinc and chromium in commonly used food items, intake by Sri Lankan adults and their levels in serum' on October 2006.

DECLARATION BY CANDIDATE

The work described in this thesis was carried out by me under the supervision of Dr. (Mrs.) M.I.F.P. Jayawardene, (Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura) and Dr. K.A.S. Pathiratne (Department of Chemistry, University of Kelaniya) and a report on this has not been submitted in whole or in part to any university or any other institution for another Degree/Diploma.

10.07.2008

Bayneighe

Signature of candidate

Date

DECLARATION BY SUPERVISORS

We certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the University for the purpose of evaluation.

Dr. (Mrs.) M.I.F.P. Jayawardene Senior Lecturer Department of Biochemistry Faculty of Medical Sciences University of Sri Jayewardenepura Nugegoda Sri Lanka

KASPattierathe

Dr. K.A.S. Pathiratne Head/ Senior Lecturer Department of Chemistry University of Kelaniya Kelaniya Sri Lanka

TABLE OF CONTENTS

I.		LIST OF TABLES	x	
П.		LIST OF FIGURES		
III.		ABBREVIATIONS	xvi	
IV.		ACKNOWLEDGEMENTS	xviii	
v.		ABSTRACT	XX	
1.		INTRODUCTION	1	
	1.1	Background	1	
	1.2	Zinc and chromium	» 1	
	1.3	Food composition data	4	
	1.4	Justification of the study	. 5	
	1.5	Objectives of the study	7	
		1.5.1 Specific objectives of the study	7	
2.		LITERATURE REVIEW	8	
	2.1	Sri Lankan situation	8	
		2.1.1 Food supply	8	
		2.1.2 Nutritional status of adults	9	
		2.1.3 Dietary recommendations for Sri Lankan adults	9	
		2.1.4 Food consumption	10	
	2.2	Zinc	13	
		2.2.1 Environmental levels and human exposure	14	
		2.2.2 Bioavailability of zinc	15	
		2.2.3 Zinc homeostasis in humans	17	
		2.2.4 Toxic effects on humans	17	
		2.2.5 Zinc deficiency	18	
		2.4.5 Indices of zinc status	19	
	2.3	Chromium	20	
		2.3.1 Environmental levels and human exposure	21	

		2.3.2	Daily requirements of chromium	22
		2.3.3	Bioavailability of chromium	23
			2.3.3.1 The glucose tolerance factor	23
		2.3.4	Chromium toxicity	24
		2.3.5	Chromium deficiency	25
	2.4	Sampl	ing, sample preparation and analysis	26
		2.4.1	Sampling	26
		2.4.2	Sample preparation methods	27
			2.4.2.1 Wet decomposition	29
			2.4.2.2 Dry ashing	31
		2.4.3	Detection and measurement	32
			2.4.3.1 Detection of zinc in environmental samples	32
			2.4.3.2 Detection of chromium in environmental samples	34
	2.5	Qualit	ty control procedure	35
		2.5.1	Recovery studies	36
		2.5.2	Standard addition method	36
		2.5.3	Certified reference materials	37
	2.6	Food	composition data	37
	2.7	Dieta	ry assessment in research involving human adults	38
		2.7.1	Dietary assessment methods	39
			2.7.1.1 Diet history	39
			2.7.1.2 Food frequency questionnaire	40
			2.7.1.3 Food record	41
			2.7.1.4 24 hour recall	42
	2.8	Zinc	and chromium status of serum	44
		2.8.1	Determination of zinc in serum	44
		2.8.2	Determination of chromium in serum	46
3.		МАТ	FERIALS AND METHODS	51
	3.1	Wate	er, glassware and chemicals	51
	3.2	Food	Isamples	51
	189936/7776	3.2.1	Sampling locations	51

	3.2.2	Sample s	size	52	1.000.004
3.3	Sampl	e preparat	ion and preservation	52	
	3.3.1	Sample	preparation methods	53	
		3.3.1.1	Dry ashing	53	
		3.3.1.2	Wet digestion	54	51
			3.3.1.2.i Kjeldahl method	54	2
			3.3.1.2.ii Open digestion method	55	į
3.4	Instru	nentation		55	
	3.4.1	Estimati	on of zinc in digested foods	55	\$
		3.4.1.1	Preparation of standard solutions	56)
		3.4.1.2	Construction of calibration curve	56)
		3.4.1.3	Sample analysis	56)
		3.4.1.4	Reporting the results	56)
	3.4.2	Estimati	on of chromium in digested foods	57	7
		3.4.2.1	Preparation of standard solutions	59)
		3.4.2.2	Construction of calibration curve	59)
		3.4.2.3	Sample analysis	59)
		3.4.2.4	Reporting the results	6()
		3.4.2.5	Analytical characteristics	60)
3.5	Valid	ation of th	e methods	60)
	3.5.1	Certifie	d reference materials	6	1
	3.5.2	Recover	ry studies	6	1
		3.5.2.1	Recovery studies for zinc	6	l
		3.5.2.2	Recovery studies for chromium	6.	2
	3.5.3	Standar	d addition method	6.	2
		3.5.3.1	Standard addition method for zinc	6	2
		3.5.3.2	Standard addition method for chromium	6	3
3.6	Deter	mination	of zinc and chromium levels in milk samples	6	3
	3.6.1	Sample	S	6	3
	3.6.2	Sample	preparation	6	3
		3.6.2.1	Determination of zinc and total chromium by wet		
			digestion method	6	3

iii

		3.6.2.2	Determination of total chromium by direct slurry	
			method	64
		3.6.2.3	Separation of hexavalent chromium in milk	64
			3.6.2.3.i Apparatus	64
			3.6.2.3.ii Procedure	65
	3.6.3	Analytic	al procedure	66
		3.6.3.1	Estimation of zinc in milk samples	66
		3.6.3.2	Estimation of chromium in milk samples	66
	3.6.4	Recover	y studies	66
		3.6.4.1	Recovery studies for zine in milk	66
		3.6.4.2	Recovery studies for total chromium in milk	67
			3.6.4.2.i Wet digestion	67
			3.6.4.2.ii Direct slurry method	67
		3.6.4.3	Recovery method for hexavalent chromium in milk	67
3.7	Deteri	nination	of zinc and chromium in water	68
	3.7.1	Sample	S	68
	3.7.2	Quantif	ication of zinc in water	68
		3.8.2.1.	Accuracy of the method	68
			3.7.2.1.i Standard addition method for zinc	68
	3.7.3.	Quantif	ication of total and hexavalent chromium in water	69
		3.7.3.1	Apparatus	69
		3.7.3.2	Pre-concentration of hexavalent chromium	69
		3.7.3.3	Pre-concentration of total chromium	69
		3.7.3.4	Analytical conditions and validity of the method	70
		3.7.3.5	Optimization of sample pre-treatment for total	
			chromium	70
		3.7.3.6	Accuracy of the method	71
			3.7.2.6.i Recovery studies	71
			3.7.2.6.ii Standard addition method for chromium	71
3.8	Dieta	ary assess	ment method	- 71
	381	Twenty	y four hour recall method	72

	3.8.1.1	Sampling methodology	72
	3.8.1.2	Ethical consideration	73
	3.8.1.3	Equipment	73
	3.8.1.4	Surveys	73
	3.8.1.5	Anthropometrics characteristics	74
		3.8.1.5.i Body weight	74
		3.8.1.5.ii Height	74
		3.8.1.5.iii Body mass index	75
	3.8.1.6	Dietary intake	75
	3.8.1.7	Calculation of percentage adequacy	75
	3.8.1.8	Statistical analysis	75
3.8.2	Market	basket method	76
	3.8.2.1	Food types	76
	3.8.2.2	Food preparation	77
	3.8.2.3	Analytical procedure	78
	3.8.2.4	Validation of the methods	78
Serum	i zinc and	l chromium levels in Sri Lankan adults	78
3.9.1	Subject	S	78
3.9.2	Ethical	clearance	78
3.9.3	Collecti	ion of blood samples	78
3.9.4	Statistic	cal analysis	79
3.9.5	Determ	ination of serum zinc levels by flame atomic	
	absorpt	ion spectrometry	80
	3.9.5.1	Apparatus - Flame atomic absorption spectrometry	80
	3.9.5.2	Procedure	80
	3.9.5.3	Accuracy evaluation	81
	r)	3.9.5.3.i Standard addition method	81
3.9.6	Determ	nination of serum chromium levels	81
	3.9.6.1	Apparatus - electrothermal atomic absorption	
		spectrometry	81
	3.9.6.2	Analytical conditions	81
	3.9.6.3	Procedure	82

3.9

			3.9.6.4.	Accuracy evaluation	84
				3.9.6.4.i Recovery studies	84
				3.9.6.4.ii Standard addition method	84
4		RESU	LTS		85
	4.1	Levels	of zinc in	n foods	85
		4.1.1	Analysis	s of zinc using flame atomic absorption spectrometry	85
		4.1.2	Compar	ison of performances of different digestion methods	85
		4.1.3	Method	validation	86
		4.1.4	Calibrat	ion	88
		4.1.5	Zinc lev	els in foods	89
			4.1.5.1	General comments	89
			4.1.5.2	Cereals and cereal products	90
			4.1.5.3	Pulses and legumes	91
			4.1.5.4	Vegetables	92
				4.1.5.4.i Leafy vegetables	92
				4.1.5.4.ii Flowers and stems	93
				4.1.5.4.iii Roots and tubers	95
			4.1.5.5	Fruits	96
			4.1.5.6	Meat, egg and fish	97
			4.1.5.7	Milk and milk products	98
			4.1.5.8	Fats and oils	99
			4.1.5.9	Other foods	100
	4.2	Level	s of chror	nium in foods	102
		4.2.1	Estimat	ion of chromium in digested foods	102
		4.2.2	Compa	rison of different digestion methods	1 <mark>0</mark> 3
		4.2.3	Method	lvalidation	104
		4.2.4	Calibra	tion	106
		4.2.5	Chrom	ium levels in foods	107
			4.2.5.1	General comments	107
			4.2.5.2	Cereals and cereal products	107
			4.2.5.3	Pulses and legumes	108

vi

		4.2.5.4	Vegetables		109
		÷	4.2.5.4.i	Leafy vegetables	109
			4.2.5.4.ii	Flowers and stems	111
			4.2.5.4.iii	Roots and tubers	112
		4.2.5.5	Fruits		113
		4.2.5.6	Meat, egg a	and fish	114
		4.2.5.7	Milk and m	nilk products	115
		4.2.5.8	Fats and oi	ls	116
		4.2.5.9	Other food	S	116
4.3	Quanti	ification of	f total and h	nexavalent chromium in water using	
	electro	othermal a	tomic absor	ption spectrometry	118
	4.3.1	Analytic	al condition	as and validation of the method	118
	4.3.2	Accurac	y of the met	hod	119
		4.3.2.1	Total chron	mium	119
		4.3.2.2	Hexavalen	t chromium	120
4.4	Estim	ation of to	otal and hexa	avalent chromium in milk by	
	electro	othermal	atomic abso	rption spectrometry	121
	4 4 1	Analyti	cal condition	as and validity of the method	121
	442	Ontimiz	vation of san	nple pre-treatment procedure	122
	7,7,2	4321	Total chro	mium	122
		4422	Hexavaler	nt chromium	122
45	Dieta	rv intake	of Sri Lanka	n adults	123
ч.Ј	4 5 1	Twenty	four hour r	ecall method	123
	4.5.1	4511	Anthropo	metric characteristics of the subjects	124
		1.5.1.1	4.5.1.1.i	Height	124
		×	4.5.1.1.ii	Weight	124
			4.5.1.1.iii	Body mass index	126
		4512	Food hab	its and intake patterns	127
		4513	Protein in	take	128
		4.5.1.5	4.5.1.3.i	Relationship between the protein intake	
			1.511.511	and age of the subjects	132
	E.	1514	Energy ir	ntake	132

		4.5.1.4.i	Relationship between the energy intake	
			and age of the subjects	133
		4.5.1.4.ii	Energy intake per kg of body weight	134
		4.5.1.4.iii	Percentage of energy from protein	135
	4.5.1.5	Zinc intak	e	135
		4.5.1.5.i	Relationship between the zinc intake and	
			age of the subjects	136
		4.5.1.5.ii	Relationship between energy intake	
			and Zn intake	137
	4.5.1.6	Chromiun	n intake	137
		4.5.1.6.i	Relationship between chromium intake	
			and age of the subjects	138
		4.5.1.6.ii	Relationship between energy intake and	
			chromium intake	139
	4.5.1.7	Average i	ntake of energy, protein, zinc and	
		chromium	as a percentage of recommended levels	139
	4.5.1.8.	Food inta	ke pattern of the subjects	140
4.5.2	Market	basket metl	nod	141
Zinc a	and chrom	nium levels	in serum	148
4.6.1	Serum 2	zinc		148
	4.6.1.1	Relations	hip between the serum zinc level and	
		age of the	e subjects	150
	4.6.1.2	Relations	hip between energy intake and serum	
		zinc level	L	150
	4.6.1.3	Relations	hip between zinc intake and serum	
		zinc leve	l i i i i i i i i i i i i i i i i i i i	151
4.6.2.	Analys	is of serum	chromium by electrothermal atomic	
	absorpt	ion spectro	metry	152
	4.6.2.1	The relat	ionship between the serum chromium level	
	14	and age	of the subjects	154
	4.6.2.2	Relations	ship between serum chromium level and	
. f		energy ir	take	155

4.6

	4.6.2.3 Re	lationship between serum chromium lev	vel with
	ch	romium intake of the subject	155
5.	DISCUSSION		157
6.	CONCLUSIONS		207
	REFERENCES	L.	209
	APPENDIX		249

List of Tables

Table 2.1	Nutritional status of adults	9
Table 2.2	Dietary recommendations for Sri Lankan adults	11
Table 2.3	Recommended food intakes (grams per day) to meet the	
	recommended dietary allowances	12
Table 2.4	Food consumption data on national level	13
Table 2.5	Dietary factors affecting zinc bioavailability	16
Table 2.6	Estimated safe and adequate daily dietary intake	
	for chromium	22
Table 3.1	Optimized furnace temperature programme used for	
	atomization of chromium from samples	58
Table 3.2	Optimized furnace temperature programme used for	
	determination of chromium in serum	82
Table 4.1	Levels of zinc found in certified reference materials using	
	different digestion methods	86
Table 4.2	Accuracy and precision of the method compared with the	
	value of certified reference materials	87
Table 4.3	Recovery data for various food samples	88
Table 4.4	Comparison of results for analysis zinc using direct calibration	
	and standard addition methods	89
Table 4.5	Content of zinc in selected Sri Lankan cereals and cereal	
	products	90
Table 4.6	Content of zinc in some selected Sri Lankan pulses and	
	legumes	91
Table 4.7	Content of zinc in selected Sri Lankan leafy vegetables	92
Table 4.8	Content of zinc in selected Sri Lankan flowers and stems	94
Table 4.9	Content of zinc in selected Sri Lankan roots and tubers	95
Table 4.10	Content of zinc in several selected Sri Lankan fruits	. 96
Table 4.11	Contents of zinc in selected Sri Lankan meat, egg and fish	97
Table 4.12	Content of zinc in selected Sri Lankan varieties of milk	
	and milk products	98

Table 4.13	Content of zinc in selected Sri Lankan fats and oils	99
Table 4.14	Content of zinc in selected Sri Lankan spices	100
Table 4.15	Content of zinc in selected Sri Lankan beverages and sugar	101
Table 4.16	Levels of chromium found in certified reference materials	
	using different digestion methods	103
Table 4.17	Accuracy and precision of the method against certified	
	reference materials	104
Table 4.18	Recovery data for various food samples	105
Table 4.19	Comparison of results for analysis chromium using direct	
	calibration and standard addition methods	106
Table 4.20	Content of chromium in selected Sri Lankan cereals and cerea	1
	products	108
Table 4.21	Content of chromium in selected Sri Lankan pulses and	
	legumes	109
Table 4.22	Content of chromium in selected Sri Lankan leafy vegetables	110
Table 4.23	Content of chromium in selected Sri Lankan flowers	
	and stems	111
Table 4.24	Content of chromium in selected Sri Lankan roots and	
	tubers	112
Table 4.25	Content of chromium in selected Sri Lankan fruits	113
Table 4.26	Content of chromium in selected Sri Lankan meat, egg	
	and fish	114
Table 4.27	Content of chromium in selected Sri Lankan varieties of	
	milk and milk products	115
Table 4.28	Content of chromium in selected Sri Lankan fats and oils	116
Table 4.29	Content of chromium in selected Sri Lankan spices	117
Table 4.30	Content of chromium in selected Sri Lankan beverages	
	and sugar	118
Table 4.31	Recoveries of total and hexavalent chromium with direct	
	method and column method	119
Table 4.32	Total chromium and hexavalent chromium contents	
31	in drinking water samples	120

Table 4.33	Results of the recovery studies for determination of total	
	and hexavalent chromium	121
Table 4.34	Total and hexavalent chromium contents in milk samples	123
Table 4.35	Anthropometric characteristics of the subjects	125
Table 4.36	General nutritional status of Sri Lankan adults	126
Table 4.37	Daily food intake patterns of the Sri Lankan adults	128
Table 4.38(a)	Energy, protein, zinc and chromium intake of Sri Lankan men	129
Table 4.38(b)	Energy, protein, zinc and chromium intake of Sri Lankan	
	women	130
Table 4.39	Protein intake g/kg body weight	131
Table 4.40	Percentage protein intake per unit of body weight of	
	Sri Lankan adults	131
Table 4.41	Energy intake of Sri Lankan adults	133
Table 4.42	Daily food intake patterns of the Sri Lankan adults	141
Table 4.43	Daily intakes of Zn and Cr in the Sri Lankan total diet	
	contributions of major food groups to daily intakes	143
Table 4.44	Percentage contribution from the main food groups to the	
	total intake of zinc and chromium	144
Table 4.45	Levels of zinc (mg/person per day) in Sri Lankan	
	market basket samples from four locations	146
Table 4.46	Levels of Cr (µg/person per day) in Sri Lankan market	
	basket samples from four locations	147
Table 4.47	Comparison of results obtained by direct calibration and	
	the method of addition	149
Table 4.48	Mean serum zinc levels of Sri Lankan men and women	149
Table 4.49	Comparison of the results obtained with standard addition	
	and direct calibration methods	153
Table 4.50	Mean serum chromium levels of the study groups	154
Table 5.1	Reported zinc levels in milk in different countries	161
Table 5.2	Total energy intake and percentage of energy from protein	175
Table 5.3	Mean body mass index and prevalence of overweightness in	
	selected countries	177

Table 5.4Reported dietary intake levels of Zn and Cr in other countries180Table 5.5Comparison of reported dietary intake and serum zinc levels
of different countries with those of present levels195

List of Figures

Figure 4.1	A calibration curve for the analysis of zinc using FAAS	85
Figure 4.2	A calibration curve for analysis of chromium using ETAAS	102
Figure 4.3	Weighted Pearson's correlation between the body mass index	
	and the age of the men and women in the group	127
Figure 4.4	Weighted Pearson's correlation between protein intake and	
	age of the men and women in the group	132
Figure 4.5	Weighted Pearson's correlation between energy intake and	
	age of the men and women in the group	134
Figure 4.6	Weighted Pearson's correlation between energy intake/kg	
	b.wt. and age of the men and women in the group	134
Figure 4.7	Weighted Pearson's correlation between percentage of energy	
	from protein and age of the men and women in the group	135
Figure 4.8	Weighted Pearson's correlation between zinc intake and	
	age of the men and women in the group	136
Figure 4.9	Weighted Pearson's correlation between energy intake and	
U	zinc intake of the men and women in the group	137
Figure 4.10	Weighted Pearson's correlation between Cr intake and the	
	age of the men and women in the group	138
Figure 4.11	Weighted Pearson's correlation between energy intake	
	and Cr intake of the men and women in the group	139
Figure 4.12	Daily intakes of energy, protein and zinc as a percentage	
	of the Sri Lankan RDA and chromium as a percentage of	
	ESADDI (NRC, 1989)	140
Figure 4.13	Average daily intakes of foods by food group, in the Sri	
	Lankan total diet	142
Figure 4.14	Percentage contributions from major food groups to zinc	
	intake	144
Figure 4.15	Percentage contributions from major food groups to chromiun	n
	Intake	145
Figure 4.16	Weighted Pearson's correlation between serum Zn level	

	and age of the men and women in the group	150
Figure 4.17	Weighted Pearson's correlation between energy intake	
	and serum zinc level of the men and women in the group	151
Figure 4.18	Weighted Pearson's correlation between Zn intake and serum	
	Zn level of men and women in the group	151
Figure 4.19	Weighted Pearson's correlation between the age and the	
	serum Cr level of the men and women in the group	154
Figure 4.20	Weighted Pearson's correlation between energy intake	
	and serum Cr level of men and women in the group	155
Figure 4.21	Weighted Pearson's correlation between Cr intake and serum	
	Cr level of men and women in the group	156

ABBREVIATIONS

24 HR	- 24 hour recall
AAS	- Atomic absorption spectrometry
AOAC	- Association of Official Analytical Chemists
APDC	- Ammonium pyrrolidine dithiocarbamate
ASV	- Anodic stripping voltammetry
BMI	- Body mass index
BMR	- Basal metabolic rate
BW	- Body weight
CAD	- Coronary artery disease
СМР	- Capacitively coupled microwave plasma
CRM	- Certified reference materials
CSV	- Cathodic stripping voltammetry
DCS	- Department of Census and Statistics of Sri Lanka
DH	- Diet history
DP-ASV	- Differential-pulse Anodic stripping voltammetry
EDTA	- Ethylene di-amine tetra acetic acid
EHC	- Environmental health criteria
ESADDI	- Estimated safe and adequate daily dietary intake
ETAAS	- Electrothermal atomic absorption spectrometry
FAAS	- Flame atomic absorption spectrometry
FAO	- Food and Agricultural Organization
FFQ	- Food frequency questionnaires
FI	- Flow injection
GTF	- Glucose tolerance factor
HDL	- High density lipids
IAEA	- International Atomic Energy Agency
ICDA	- International Chromium Development Association
ICP-AES	- Inductively coupled plasma atomic emission spectrometry
ICP-MS	- Inductively coupled plasma mass spectrometry
INCLEN	- International Clinical Epidemiological Network
IOS	- International Organization for Standardization

xvi

LOD	- Limit of detection
LOL	- Level of linearity
MRI	- Medical Research Institute
NAA	- Neutron activation analysis
NHANES III	- The third national health and nutrition examination survey
NRC	- National Research Council
RDA	- Recommended dietary allowances
SD	- Standard deviation
SEM	- Standard error of mean
SF-ICP-MS	- Sector-field inductively coupled plasma mass spectrometry
US-EPA	- Environmental Protection Agency, United States
VAD	- Vitamin A deficiency
WHO	- World Health Organization
XRF	- X-ray fluorescence

ACKNOWLEDGEMENT

I express my deepest gratitude to my supervisors Dr. (Mrs.) M.I.F.P. Jayawardene and Dr. K.A.S. Pathiratne for their guidance, help and encouragement given me throughout this study. And I address special thanks to Dr. K.A.S. Pathiratne for giving me the opportunity to learn and to be confident on atomic absorption spectrometric analysis and his endless patience in correcting my thesis and improving my writing.

I extend my warmest gratitude to Professor E.R. Jansz who was an endless source of help and advice during this period. I am grateful to Professor Nalini Wickramasinghe, Professor Hemantha Peiris, Dr. Sagarika Ekanayake and other academic staff of the Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura for their advice and numerous supports in the achievement of this work. Also my sincere gratitude goes to the non academic staff members of the department for their numerous supports.

I extended my warmest gratitude to Professor W.D.W. Jayatilake, Department of Chemistry, Dr. Upul Subasinghe, Mr. Wijesinghe and other academic and non academic members of the Department of Forestry and Environmental Science, University of Sri Jayewardenepura for providing me with numerous support and very useful materials.

I would like to thank Professor Rohan Weerasooriya, Institute of Fundamental Studies, Kandy, for his valuable guidance at the initial stage of this study and directing me to the Dr. K.A.S. Pathiratne's lab. My sincere gratitude goes to my research colleagues, Indika, Channa, Chandika, Lakshmee, Inoka and non academic staff of the Department of Chemistry, University of Kelaniya, for their numerous supports.

I am happy to acknowledge my research colleagues Sumuduni, Keerthi, Chamani, Sampath, Shiromi, Chaminda, Samantha, Inoka, Sugandika, Darshika, Ishira and Nadee for their endless support and motivation. I am also thankful to my friends, Sisira Ediriweera, Pradeep Rajathewa, Ruwanthi Gunawardene and her family for the help given me during the preparation of this thesis.

Special thanks are due to my mother, brothers & sisters and their families for their boundless faith and love extended to me in achieving my goals. Finally I would like to express my indebtedness to my wife for her sacrifice and understanding. Without her encouragement and understanding it would have been impossible for me to finish this work. Zinc and chromium in commonly used food items, intake by Sri Lankan adults and their levels in serum

Balapanage Sumith Jayasinghe

ABSTRACT

Zinc and chromium are two essential trace elements required in modest amounts to maintain health and optimal physical function of humans. Trace elements either toxic or essential, reach the human body through foods, drinks, ambient air and other occupational and accidental exposures. There are no reported data on levels of these metals in foods, environmental samples, and dietary intake levels of the population with their serum levels in Sri Lanka. The aim of the present study is to determine Zn and Cr in commonly used food items and to determine the intake and the levels of Zn and Cr in serum of Sri Lankan adults and compare their intake levels with respect to serum levels of Zn and Cr.

Individual food items (categorized into groups) were analysed for Zn and Cr using flame atomic absorption spectrometry (FAAS) and electrothermal atomic absorption spectrometry (ETAAS) respectively. Accuracy and validity of the results were examined by analyzing certified reference materials [IAEA–155, Whey powder and IAEA– 140/TM, Sea weeds (*Fucus sp.*)], which gave expected values.

Dietary energy, protein, Zn and Cr intake were measured by using twenty-four-hour recall method (24 HR) in a selected group of Sri Lankan adult men and women age 20 to 59 years. In order to compare the reported dietary intakes of Zn and Cr, market baskets containing more than a hundred food items included in the average Sri Lankan diet were purchased from 4 locations: Colombo, Kandy, Dambulla and Balangoda.

Freeze dried homogenates representative of each basket of food from each location were then dry ashed and analysed for Zn and Cr elements using FAAS and ETAAS respectively.

The 24 HR reported mean dietary Zn intakes of Sri Lankan adult men and women were 8.6 ± 1.7 mg/day and 7.2 ± 1.3 mg/day respectively. Market basket results reported the average Zn level to be 9.4 ± 0.2 mg/day. Based on the 24 HR, the mean dietary Cr intakes of Sri Lankan adult men and women were 65.3 ± 32.3 µg/day and 62.6 ± 34.6 µg/day respectively. Market basket results reported the average Cr level to be 70.0 ± 1.0 µg/day. These reported Zn and Cr intakes were comparable with several research studies conducted worldwide. The results of the dietary intake survey indicate that the dietary intake level is nearly 60 % for men and 72 % for women. In all the cases, the reported Cr intake levels were above the lower limit of the safe and adequate daily dietary intake levels of 50 - 200 µg/day suggested by the National Research Council, USA (1989).

In estimation of the serum levels of Zn and Cr, serum samples were diluted with a mixture of 1% HNO₃ and 2% Triton X-100 and analysed for Zn and Cr using FAAS and ETAAS respectively. For the whole population mean serum Zn for men and women were $93.8 \pm 3.0 \mu g/dl$ and $91.4 \pm 3.2 \mu g/dl$ respectively. Reported mean serum Cr for men and women were $4.4 \pm 0.3 \mu g/dm^3$ and $3.9 \pm 0.2 \mu g/dm^3$ respectively. In this limited number of samples, serum Zn and Cr levels decreased with age. In order to decide the correlation between Zn and Cr intake of individuals with their respective values in serum, further extensive research including bioavailability studies are needed.