CASE STUDY IN MINING INDUSTRY AND IT'S EFFECTS IN ODDUSUDAN AREA

by

Peththahandi Navin Osada Wickramaratne

Thesis submitted to the University of Sri Jayawardanapura for the award of the Degree of Master of Science in Geographic Information Systems and Remote Sensing

On 15th June 2014.

"I certify that the above statement made by the candidate is true and that thesis is suitable for submission to the university for the purpose of evaluation."

Dr Ranjith Premasiri

Date

15/06/2014

(Senior Lecturer, University of Moratuwa, Sri Lanka)

Faculty of Engineering

Department of Earth Recourses

University of Moratuwa

Sri Lanka.

TABLE OF CONTENT

	Page
Table of Content	i
List of tables	iv
List of figures	v
Abbreviations	vii
Acknowledgements	ix
Abstract	xi
CHAPTER 01 - INTRODUCTION	1
1.1 The required standards for selecting an aggregate for a project	3
1.2 Research problem	5
1.3 Significance of the study area	
1.4 Objectives	11
CHAPTER 02 - LITERATURE REVIEW	12
2.1 Introduction to the nature of mining industry	12
2.1.1. Definitions – Mining	12
2.1.2. What is an aggregate?	14
2.1.3. What is a quarry?	14
2.1.4. Quarrying history	15
2.1.5. Mining techniques	16
2.2 Advantages and disadvantages of mining industry	18
2.3 Impacts of the Mining Industry	19
2.3.1. Impacts on water resources	19
2.3.2. Impacts of mine dewatering	21
2.3.3. Impacts of mining projection air quality	22
2.3.4 Impacts of mining projects on wildlife	24
2.3.5 Impacts of mining projection soil quality	25

	2.3.6	Impacts of mining projection social values	26
	2.3.7.	Impacts of migration	27
	2.3.8	Impacts on livelihoods	28
	2.3.9	impacts on public health	29
	2.3.10	Impacts to cultural and aesthetic resources	30
	2. 3.1	Climate change considerations	30
2.4 L	egal fran	nework of the mining industry in Sri Lanka	32
2.5 R	Rehabilita	ation of mining sites	36
	2.5.1	introduction to rehabilitation of mining sites	36
	2.5.2]	Feasible rehabilitation options	38
CHA	PTER (3 - METHODOLOGY	46
3.1 C	eneral d	escription of the study area	46
	3.1.1	Rock types and their mineral constituents	49
	3.1.2	Micro- petro graphic description of representative rock	
		Specimens	53
	3.1.3	Physical features	53
3.2	Sampl	ing	54
3.3	Data a	and data collection	55
3.4	Data a	analysis procedure	56
	3.4.1	Nature of complain	56
	3.4.2	Data collection and preparation	60
		3.4.2.1 The geo database	60
		3.4.2.2 Feature data sets	61
		3.4.2.3 Contours	62
		3.4.2.4 Google Earth	62
		3.4.2.4 Flow direction	63
		3.4.2.5 Flow accumulation	63
		3.4.2.6 Snap the pour points	64
		3.4.2.7 Watershed	64

3.5 Methodology	65
3.5.1 Methodology for objective 1	65
3.5.2 Methodology for objective 2	66
3.5.3 Methodology for objective 3	67
CHAPTER 04 - RESULTS	68
4.1 Analysis of objective 1	68
4.2 Analysis of objective 2	80
4.3 Analysis of objective 3	82
CHAPTER 05 - CONCLUSION AND RECOMMENDATION	85
5.1 Conclusion	85
5.2 Recommendation	87
REFERENCE	89
ANNETURE	01

LIST OF TABLES

Table No	Caption	Page
	사용하면 살아왔지만 그렇지만 살아왔다. 아이라면 어린다는 것	
Table 1.1	Companies operating quarries and crushers in the area	5
Table 1.2	The distribution of the mining industry in Sri Lanka.	9
Table 3.1	GPS Coordinates of quarry site.	47
Table 3.2	Approximate percentages of rock types.	50
Table 3.3	Fracture systems.	53
Table 3.4	Problems associated with dust and preventive measures.	56
Table 3.5	Latest test blasting figures for noise measurements.	57
Table 3.6	Latest test blasting figures for vibrations.	58
Table 3.7	Nature of damages.	59
Table 3.8	Collected data layers, scales and sources.	60

LIST OF FIGURES

Table No	Caption	Page
Figure 1.1	All DSD's and highlighting Oddusudan and nearby	
	GND's	2
Figure 1.2	Geological map around the proposed quarry site at	
	Oddusudan in Mullaitivu district	6
Figure 1.3	Image of LTTE abandoned quarry from the area	7
Figure 1.4	Quarry distributions in Sri Lanka	10
Figure 1.5	Quarry site distribution map of Sri Lanka	10
Figure 2.1	Underground long wall mining	16
Figure 2.2	Coal Sales surface mine near Chavies	17
Figure 2.3	Mantrap used for transporting miners within an	
	Underground mine	17
Figure 2.4	Benefit-sharing channels	18
Figure 2.5	Feasibility of rehabilitation options	45
Figure 3.1	Location of the study area	46
Figure 3.2	Initial sketch map of BPP quarry site area:	
	(Source: BPP, IEE, 2009)	48
Figure 3.3	Present view of BBP quarry site of the Q6 to Q7	49
Figure 3.4	Approximate percentages of rock types	50
Figure 3.5	Data analysis procedure for noise	57
Figure 3.6	Data analysis procedure for vibration	57
Figure 3.9	Methodological process – Objective 1	65
Figure 3.10	Methodological process – Objective 2	66
Figure 3.11	Metrological process for rehabilitation	67
Figure 4.1	Location plot with use of Google earth	68
Figure 4.2	Conversion of layers with different data	69
Figure 4.3	Study area against the complains	70
Figure 4.4	Buffer insertion for 600 meters	71
Figure 4.5	600 meter buffer exported to Google earth	72
Figure 4.6	Buffer insertions for 1000 meters	73

Figure 4.7	1000 m buffer exported to Google earth	74	
Figure 4.8	Multiple buffer the nature of complains	75	
Figure 4.9	The outlook of the case study area against the		
	Complains	76	
Figure 4.10	Hot spot analysis of the high risk area	77	
Figure 4.11	Layout of the hot spot analysis	78	
Figure 4.12	Layout of the multiple buffer zone	79	
Figure 4.13	Annual population of Mullativu district	80	
Figure 4.14	GND wise resettled population in Oddusudan as		
	Per 31.12.2013	80	
Figure 4.15	Population resettlement of Oddusudan DSD	81	
Figure 4.16	Tin to raster map indicating the quarry	82	
Figure 4.17	Flow direction map	82	
Figure 4.18	Map of flow accumulation in pour point	83	
Figure 4.19	Map of Stream order	83	
Figure 4.20	Stream order direction of the area	84	

ABBREVATIONS

ACV : Aggregate Crushing Value

AIV : Aggregate Impact Value

AML : Artisanal Mining License

ANFO : Ammonium Nitrate/Fuel Oil

BBS : Bulletin Board Systems

BPP : Business Promoters and Partners (Pvt) Ltd.

CIA : Central Intelligence Agency

DEM : Digital Elevation Model

DS : Divisional Secretariat

DSD : Divisional Secretariat Division

ED : Electric Detonators

IEE : Initial Environmental Examination

IEER : Initial Environmental Examination Report

EIA : Environmental Impact Assessment

EVR : Economic Viable Report

FI : Flakiness Index

GA : Government Agent

GIS : Geographical Information Systems

GND : Grama Niladhari Division

GPS : Global Processing System

GSMB : Geographical Survey and Mines Bureau

Ibid : ibidem (in the same place)

IML : Industrial Mining License

ISO : International Standard Organization

KML : Keyhole Markup Language

LTTE : Liberation Tigers of Tamil Eelam

LAAV : Los Angeles Abrasion Value

MLT : Mullativu

MOD : Ministry of Defense

RDA : Road Development Authority

RML : Reserved Minerals License

SL : Sri Lanka

SRTM : Shuttle Radar Topography Mission

TDL : Trading License

TFV : Ten percent Fines Value

US : United States

WGS : World Geodetic System

WHO : World Health Organization

3D : Three Diamentional

ACKNOWLEDGMENT

I am gratefully and heartily thankful to my supervisor, Dr. Ranjith Premasiri for his guidance, support, understanding, patience and mostly, his encouragement that enabled me to make this research success.

Also I am very much grateful to our course coordinator Dr. Rev. Pinnawala Sangasumana, all the lecturers, instructors of the MSc. program in GIS and Remote Sensing and the staff of the Faculty of Postgraduate studies University of Sri Jayawardanapura, Sri Lanka for the great support and guidance throughout the whole course.

I would like to thank Mr. Buddhika (Assistant Director Planning at Government Agents office, Mullaitivu) for all the support rendered by him and his staff.

Also I would like to thank Mr. Balajayanth (President of the rural development society of the Sinnasalamban, Oddusudan) for all the support rendered by him throughout the study.

I would also thank, Chief Operation Officer of the Business Promoters and Partners (Pvt) Ltd. Capt(Rtd) Athula Pothupitiya and Project Director of the quarry site LtCol.(Rtd) Indaka Yakandawala and Director of Marketing Mr. Kapila Vithanage and for all the staff provided assistance to me throughout the research.

Also needed to remember my former Commanding Officer Late Cdr (G) Janaka Priyantha (WWV, RWP) encourage me from the very beginning to complete this course successfully.

My heartfelt gratitude goes to my dear parents, to my wife who have been my mentors always supportive and urging me to go on and appreciate support and encouragement..

Finally I would like to thank all my colleagues Rathnayaka, Wasana, Nalaka, Nimal, specially Monoj and Niluka for their continuous encouragement and support given during this course.

CASE STUDY IN MINING INDUSTRY AND IT'S EFFECTS IN ODDUSUDAN AREA

Peththahandi Navin Osada Wickramaratne
Faculty of Graduate Studies
University of Sri Jayewardenepura
Sri Lanka

ABSTRACT

Oddusudan area can be considered as the terminating or stopping point of the aggregate distributing pattern of Sri Lanka. There are no standard mining fields available further moving towards North. Huge development is on progress with the termination of the terrorist activities after 30 years. Presently infrastructure development in the Northern area can be considered as the main business.

The aim of the research was to emphasize the importance of the mining industry to the Oddusudan area. Anyone can point out several damages occurred to their property or belongings due to this mining operation. But complaining is just one method and here with the research identified and introduced under what range zone that the company needs to consider about the complains. Many experienced mining operators tend believe permanent structures beyond the range of 800meters less liable for get damaged or to be complained. With this research figures proves that believe is wrong and identify risk area starts with the range of 800 meters and it will spread up to 1200 meters.

Resettlement process and many development projects such as road, railway and housing projects funded by several organizations and by some nearby countries. With the end of war and people are now settling they a need medium for living. So many and more job opportunities are required. The population fluctuation pattern need to identify earlier or else the peacefulness in the area and can create social inquietude. Most of young bloods rehabilitated are ex-LTTE carders with hot blood temperature. These young mind sets

tend to float as they will look for money for satisfy their needs. Jobs will tight up their minds and kept them busy. That is highly required specially in this transit period. As stated by the officer in charge of the oddusudan police station his police station is the best police station with less number of crimes in the northern area.

After the project termination, refilling the excavated area with used soil or waste is the traditional method of rehabilitation. But considering adjacent geographical features and socio environmental requirements of the area, this research can introduce a most suitable methodology for rehabilitation. Study area comes under the dry zone and annual rain fall comes between 1500milimeter to 1900 millimeter and majority of rain collected in the months of October to December respectively. During the north east monsoon and there after till convectional rain fall in April, there will be a less rain throughout the year.

People in the area suffer due to lack of rain fall and irrigatable land area got restricted to this reason. So while taking the highly demanded aggregate source out from a soil, afterward can converted this project in to a useful outcomes with benefiting the people. Propose artificial tan with lifting mechanism will benefit both people and wild animals with collection of rain water catchment for their survival and for requirements.

CHAPTER 01

1. Introduction

This research highlights that aggregate industry highly demanded for development in Northern Province and its bond with the local society. Many projects observed successfully completed and many are being followed. Those projects provide evidence of the nature of development that is on progress. Also need to denote that, for most of the projects aggregate requirements were fulfilled and catered though the supply from this Oddusudan area.

People in Oddusudan area suffered from war for more than 30 years and now in the transit period. From past records many individuals can be identified as Ex-LTTE (Liberation Tigers of Tamil Eelam) carders. Situation is like that and war is over still these people in the recovery period. These people need medium of living, as most of them have lost or sacrificed every single penny of their past living and earning during the war period. These quarry/mining industry means a great deal of relief to them. Few reputed companies operating quarries/mining fields in the area. These companies do look after these people's needs and these innocent people presently living happily with rapid personal development. In other words whatever the development in Oddusudan area in personal lives of these people are achieved today mainly thanks to these mining organizations.

Mining industry and its related business activities can be identified as the main source of income to these people. For Oddusudan mining is not just another industry when compare to other areas in the country. Villagers in Oddusudan and mining are heavily bonded with each other with benefit sharing. Rather than always look about this mining industry with dark glass on. Here the attention was focused to discuss about both positive factors same as negatives about the mining industry with related to the Oddusudan area.