DEHYDRATION OF OYSTER MUSHROOMS AND DEVELOPMENT OF VALUE ADDED PRODUCTS FROM DEHYDRATED OYSTER MUSHROOMS

BY

L.H.D.BANDUSOMA

M.Sc.

DEVELOPMENT OF VALUE ADDED PRODUCTS FROM

DEHYDRATED OYSTER MUSHROOMS

BY

L.H.D.BANDUSOMA

Thesis submitted to the University of Sri Jayewardenepura for the award of the degree of Master of Food Science and Technology on 2006

DECLARATION

" The study described in this thesis was carried out by me at Food Science Laboratory of University of Sri Jayewardenepura under the supervision of Professor Athur Bamunuarachchi and Dr. K.K.D.S.Ranaweera and a report on this has not been submitted in whole or part to any University or any other institution for another Degree."

L.H.D.Bandusoma

"We certify that above statement made by the candidate is true and that this thesis is suitable for submission to university for the purpose of evaluation."

Dr. KK.D.S.Ranaweera Head Department of Food Science and Technology University of Sri Jayewardenepura.

Prof. A.Bamunuarachchi Department of Food Science and Technology University of Sri Jayewardenepura

CONTENTS

		1 48
List o	f Table	i
List o	f Graphs	ii
Abstra	act	iii
Ackno	owledgement	iv
Chap	ter 01	
	duction	
1.1.	General Overview	1
1.2.	Dehydration	3
1.2.1	Food preservation by drying	4
1.2.2.	Why dried foods	4
1.2.3.	Successful Drying	6
1.2.4	Dehydration –Artificial Drying	7
1.2.5.	Dehydration Vs Sun drying	7
1.3.	Oyster Mushrooms	8
Chap	tor 02	
-	w of Literature	
2.1.	Food Dehydrators	9
2.2	Basic Type of Dehydrators	9
2.2	Solar food drying	9
2.3.1.	Guidelines to Handling fruit & Vegetables in sun drying	12
2.4	Room drying	12
2.5	Drying of Mushrooms in drying chamber containing	12
	Calcium chloride	
2.6	Dehydro Freezing	13
2.7	Osmotic Dehydration	13
2.8	Influence of drying on Microorganisms	13
2.9	Influence of drying on Nutritive value	14

Page

2.10	Influence of drying on Enzyme activity	15
2.11	Influence of drying on Pigments in foods	15
2.12	Preservation of Mushrooms	16
2.12.1	Preserving Mushrooms with CO2	18
2.13	Dehydration of Mushrooms and development of value	
	added products from dehydrated mushrooms	18
2.13.1	Mushroom Juice	18
2.13.2	Mushroom Tea	18
2.13.3	Mushroom Soup	19
2.13.4	Mushroom pizza	19
2.14.	Different dehydrated products	19
2.14.1	Dehydration of fruits	19
2.14.2	Dehydration of vegetables	20
2.14.3	Dehydration of Animal products	21
2.14.4	Dehydration of fruits	22
2.14.5	Dehydration of fish	22
2.14.6	Dehydration of Milk	22
2.15	Packaging of dehydrated foods	23
Chapt	er 03	
3.1	Back ground of the study	24
3.2	Objectives of the Research	25
Chapt	er 04	
Exper	imental methods and materials	
4.1	Determination of suitable temperature for dehydration of	
	Oyster Mushrooms	26
4.2	Determination of suitable method for dehydration of	
	Oyster Mushrooms	26
4.3	Flow diagram of the process	28
4.4	Development of dehydration curves	29
4.5	Determination of microbial quality	29

4.5 Determination of microbial quality4.5.1 Total plate count

4.5.2	Preparation of nutrient agar medium	30
4.5.2.1	Introduction to media and media preparation	30
4.5.2.2	Materials for NA media	30
4.5.2.3	Procedure for preparation of NA media	31
4.5.3	Preparation of potato dextrose media (PDA and PB)	31
4.5.3.1	Introduction to PDA media	31
4.5.3.2	Materials	31
4.5.3.3	Procedure	32
4.5.4	Sample preparation	32
4.5.5	Serial dilution method	33
4.5.6	Sequence of serial dilution	33
4.5.7	Introduction of media	34
4.5.8	Coliform	35
4.5.8.1	Materials	35
4.5.8.2	Regents	35
4.5.8.3	Procedure	35
4.5.6	Sensory quality analysis	35
4.6.1	Sensory quality assessment of mushroom bites	36
4.6.2	Sensory quality assessment of mushroom Modju	37
4.6.3	Sensory quality assessment of mushroom Embulthiyal	37
4.6.4	Sensory quality assessment of mushroom sambol	38
4.7	Proximate analysis	39
4.7.1	Oven Drying Method	39
4.7.2	Determination of Fat	40
4.7.3	Determination of protein	40
4.7.4	Determination of Ash	44
4.7.5	Determination of Fiber	46

Chapter 05

Results and Discussion

5.1 Determination of Suitable temperature for Dehydration of Oyster Mushrooms

5.2.	Development of dehydration curves5.2. Development of	
	dehydration curves	49
5.3.	Determination of Microbial quality	52
5.3.1.	Total plate count (TPC)	
5.3.2.	Determination of Bacteria	52
5.3.4.	Determination of Fungi	54
5.3.5.	Coliforms	55
5.4.	Proximate Analysis	55
5.5.	Sensory quality Analysis	57
5.5.1.	Sensory quality assessment of Mushroom Bites	57
5.5.2.	Sensory quality assessment of Mushroom Modju	59
5.5.3.	Sensory quality assessment of Mushroom Embulthiyal	60
5.5.4.	Sensory quality assessment of Mushroom Sambol	61

Chapter 06

Conclusion	64
References	66
Annex	68

LIST OF TABLES

n

		Page
i.	Nutritional composition of the Beef	04
ii.	Nutritional composition of the Milk	05
iii.	Nutritional composition of the Oyster Mushroom	05
iv.	Suitable dilution factors for different sources	33
v.	Serial dilution factors	33
vi.	Weight of the Mushroom during Dehydration	49
vii.	Moisture content (%) Vs Time	50
viii.	Weight of the Mushroom during Dehydration	50
ix.	Moisture content (%) Vs Time	51
x.	Average number of colony observed in microbial test	53
xi.	Average number of colony forming unit for bacteria	53
xii.	Average number of colony forming unit for fudgi	54
xiii.	Average number of colony forming unit for fungi	54
xiv.	Proximate Analysis results of different type of products of mushrooms	56
xv.	Average scores of 20 judges on 5-points Hedonic scale on Mushroom bites	57
xvi.	Average scores of 20 judges on 5-points Hedonic scale on Mushroom mod	ju59
xvii.	Average scores of 20 judges on 5-points Hedonic scale on Mushroom embulthiyal	60
xviii.	Average scores of 20 judges on 5-points Hedonic scale on Mushroom sambol	62

i

LIST OF GRAPHS

		Page
i.	Dehydration cure of Oyster Mushroom (at 60 °C)	50
ii.	Dehydration cure of Oyster Mushroom (at 55 °C)	51
iii.	Sensory evaluation results of Mushroom Bites	58
iv.	Sensory evaluation results of Mushroom Modju.	59
v.	Sensory evaluation results of Mushroom Embulthiyal	61
vi.	Sensory evaluation results of Mushroom Sambol	62

DEVELOPMENT OF VALUE ADDED PRODUCTS FROM DEHYRATED OYSTER MUSHROOMS

BY

L.H.D.BANDUSOMA

ABSTRACT

Mushroom or fungi are appreciated for their good taste and nutritional value. Literally, hundred of edible species of fungi are gathered throughout the world, but less than ten species are commercially cultivated in any significant Quantity.

With the introduction of new technologies during the past two decades the cultivation of few edible mushroom species namely, *Pleurotus* spp (oyster and Abalone) and *Volvoriella* species has spread over the Island.

It was estimated that around 500 tons per annum of fresh oyster mushroom produced by small scale growers in Sri Lanka Total mushroom production in 1992 was 800 tons. It was estimated to be 2000 tons in 2006.

A large volume of the national mushroom production has spoiled specially in rainy season and adoption of poor technologies to drying mushroom. The major constraints related to the mushrooms are lack of technology for dehydration preservation and storage.

Fresh, dehydrated mushrooms and value added product developed from dehydrated mushrooms is being increased during the past few years. The series of experiments were planned and performed to find suitable method to dehydrate Oyster mushrooms by applying oven dried and sun drying method while treating mushrooms in different ways such as Blanching and dehydration, Use SMS and dehydration, use of citric acid and dehydration, etc.

The suitable method selected that the fresh Oyster mushroom soaked in water for an hour to half an hour and dehydrate. It was found that under this condition dehydrated mushroom was in a quality. The suitable temperature and time period for dehydration of Oyster mushroom was 60 C for 10-12 hrs in oven drying method. In the case of sun drying method fully sunny one day 8hr dehydrate the moisture content up to 14-15 %. Dehydration curve developed and it is shown the highest rate of removal of moisture period of time dehydration started and then it was in lower rate.

Dried mushroom sample were suspected to carry fewer amounts of bacteria as the moisture of the product is flashed of by dehydration. All valued added products were assessed for pathogenic bacteria and fungi and coli forms. Nutrient age and potato dextrose media were used to determine Bacteria and fungi respectively. Total plate count was taken. Microorganisms in dried and value added products were very less. But higher Microorganisms were examined in fresh mushrooms.

Microorganisms in dehydrated mushrooms from both Sundrying and oven drying methods were significantly very lees. Value added products contain significant amount of MOS. Coli forms were not examined in any product.

Since significant difference were observed in the nutrients composition of fresh oyster mushrooms. Fresh mushrooms are significantly lower than dehydrated oyster mushrooms due to higher moisture content of fresh mushrooms.

iv

According to the results obtained from proximate analysis, Moisture 87.7%, Protein 3.8% Fat 0.6%, Fiber 1.2% and Ash 1.0% in fresh mushrooms. Moisture 14.9%, Protein 16.0%, Fat 0.9%, Fiber 4.0% and Ash 3.6% in over drying method and 15% Moisture, 15.9% Protein, 0.1% Fat, 4.5% Fiber and 3.5% Ash. Was examined in sun dried methods.

Sensory quality assessment of the value added products developed from dehydrated mushrooms were evaluated separately and compare with the market sample.

A panel of 20 untrained judges were asked to evolution Texture, colour, taste, external appearance and overall acceptability of the sample Walts et al (1989) statistical analysis were carried out according to the non-Parametric fried man test (Roland 200).

It was examined that the sensory and overall quality attributors are better in products from oven drying method than products from sun dried methods and market.

ACKNOLEDGEMENT

I wish to express my sincere gratitude to my supervisors, Prof; A.Bamunuarachchi and Dr. K.K.D.S.Ranaweera, Department of Food Science & Technology, University of Sri Jayewardenepura, Sri Lanka for their valuable suggestions, guidance and support extended to me at all times during my course of study.

My sincere gratitude also grant Mrs. Indira Wickramasinghe and Mr.M.A.J.Wansapala Department of Food Science and Technology for their valuable suggestions, guidance and support to me during laboratory tasks.

I would like to express my sincere gratitude to the Science and Technology Personnel development Project, Asian Development Bank for offering a full scholarship.

I wish to thank University of Sri Jayewardenepura for enabling to be carrying out this research and for the use of their facilities during experimental works. I am very grateful to Mrs.P.R.D.Perera, Department of Food Science and technology for her kind assistance and co operation during my period of work.

Award of thanks are also due to Mr. Sisira Weerasinghe Technical Assistant Department of Food Science and technology, for helping me in numerous ways, during my research study.

I greatly appreciated the assistance provided to me by Mr.D.P.Rupasinghe Lab Assistant Department of Food Science and technology for helping me in numerous ways, during my research study. I greatly appreciated the assistance provided to me by my friends Miss H.M.U.Bandara, Miss M.B.Mahagoda, Miss D.W.C.P.Dambugolla for research work and preparing thesis documents. Finally, I wish to thank all those who helped me in various ways, to make my study a success.

vi

Chapter 1

Introduction

1.1. General Overview

The Market for mushrooms continuous to grow due to interest in their culinary, nutritional, and health benefits. They also show potential for use in waste management. However, as fungi, mushrooms have life cycles very different from those of green plants. The choice of species to rise depends both on the growth media available and on market considerations. Oyster mushrooms, which grow on many substrates, are easiest for beginner. Shiitake mushrooms already have earned considerable consumer demand. Mushroom cultivation offers benefits to markets gardens when it is integrated in to the existing production.

Mushroom or fungi are appreciated for their good taste and nutritional value, literally, hundreds of edible species of fungi are gathered through out the world, but less than ten species are commercially cultivated in any significant quantity. The relative order of importance of the main mushroom species is *Agaricus, Lentinus, Volvariella, Pleurotus, Auricularia and Flammulina*. Annual world wide production of mushroom 2005 was around tons 3,423,652. Mainland USA is the leading producer followed by China and France.

In recent years, *Pleurotus* along with *Lentinus* and *Volvariella* have gained prominence as a type of a edible mushroom in eastern countries. *Pleurotus* species thrive over a wide range of subtropical climates and are representatives of white not fungi which can degrade directly the lingo cellulose wastes of nature.