Preservation and value addition of fish salaya (Sardinella gibbosa)

By

HAEMAH VAIKUNTHARAJA

M.Sc

2006

Declaration of Candidate

The work described in this thesis was carried out by me under the supervision of Prof. Arthur Bamunuarachchi and a report on this has not been submitted in whole or in part to any university or any other institution for another degree / diploma.

Date: 24.11.2006 .

Hradeunthoray-

Haemah. Vaikuntharaja

Declaration of Supervisor

I, Prof. Arthur Bamunuarachchi certify that the above statement made by the candidate is

true and that this thesis is suitable for submission to the University for the purpose of

evaluation.

Date: 24/11/06

Signature

Prof. Arthur Bamunuarachchi, Coordinator Food Science and Technology Programs, Department Of Food Science and Technology, University of Sri Jayewardenepura, Sri Lanka.

TABLE OF CONTENTS

Conte	ents	Page No i
Lists	of Tables	vi
Lists	of figures	vii
Ackn	owledgements	viii
Abbr	eviations	ix
Abstr	ract	x
CHA	PTER 1	
1	Introduction	1
СНА	PTER 2	
2	Literature review	6
2.1	About the fish Sardinella gibbosa (Goldstripe Sardinella) 6
	2.1.1 Distribution	8
	2.12 Interest to fisheries of fish salaya	9
2.2	Nutritive value of fish	11
	2.2.1 Protein	11
	2.2.2 Polyunsaturated Fatty acids	11
	2.2.3 Vitamins and minerals	13

	2.2.4	Average composition of fish	13
2.3	Princi	ple of Drying and steaming	14
	2.3.1	Drying	15
	2.3.2	Dryers	16-18
2.4	Value	addition of fish	19-20
	2.4.1	Quality assurance	21
	2.4.2	Marketing and distribution	21
	2.4.3	Trade barriers	22
	2.4.4	Packaging of dried fish products	23
2.5	Poten	tial Food Safety Hazard	23
	2.5.1	Control Measures	23
	2.5.2	Process Establishment	25
	2.5.3	Critical Aspects of Processes	26
	2.5.4	Quality control system in the industry	26
	2.5.6	Modern concept of preventive quality control	27
		2.5.6.1 The HACCP concept	27-28
2.6	Chem	nical Analysis	38-30
2.7	Micro	obiological measurement	31-32
2.8	Senso	ory evaluations	33
	2.8.1	Location and Layout	34
	2.8.2	Preparation area	34
	2.8.3	Evaluation Area	35

CHAPTER 3

3	Exper	imenta	1	
3.1	Presei	vation	of fish Salaya by steaming and drying process	37
		3.1.1	Materials	37
		3.1.2	Method	37
3.2	Value	additio	on of fish Salaya	38
		3.2.1	Materials	38
-		3.2.2	Method	39
3.3	Deter	minatio	on of Chemical Physical and Microbial Parameter	·s 40
	3.3.1	Studi	es on Chemical parameters	40
		3.3.1.	Determination of Moisture content of fish samples	40
			3.3.1.1.1 Materials	40
		3.3.1.2	3.3.1.1.2 Method 2 Determination of Trimethylamine content of fish sa	40 amples
			3.3.1.2.1Materials	41
			3.3.1.2.2 Method	42
	3.3.2.	Studie	es on Physical Parameters	43
		3.3.2.	1Determination of the pH value of the samples	43
		3.3.2.	1.1Materials	43
		3.3.2.	1.2Method	43
	3.3.3	Studies	on microbial parameters.	44

	3.3.3.1Estimation of Total microbial count	
	(Aerobic plate count) of Fish samples	44
	3.3.3.1.1Material	44
	3.3.3.1.2 Method	45
3.4	Sensory evaluation	46
	3.4.1 Material	46
	3.4.2 Method	46-47
CHAI	PTER 04	
Resul	ts and discussion	48
4.1	Moisture Content	49-51
4.2	Trimethyl amine content	52-54
4.3	pH measurements	54

4.4	Micro	Microbial counts		55
4.5	Sensor	ry evaluation of the three fish Samples		56
	4.5.1	ANOVA scores for appearance		59
	4.5.2	The ANOVA scores for Texture test		60
	4.5.3	ANOVA scores for Odour		60

CHAPTER 05

DISCUSSION		61
5.1	Moisture Content	61
5.2	Trimethyl amine content	61
5.3	pH measurements	63
5.4	Microbial counts	63-64
5.5	Sensory evaluation of the three fish Samples	65
CONCLUSIONS		66-67
REFERENCES		68-69
APPENDIX 1		70
APPENDIX 11		71
APPENDIX 111		73
APPENDIX 1V		76

Lists of Tables

Table 1	Weight of the fish sample for the first 6 hours of drying 4	
Table 2	Moisture contents of dried fish samples during storage	
	of 3 months	50
Table3	Moisture contents of value added fish sample during	
	storage of three months	51.
Table 4	Trimethylamine contents of dried fish during storage	
	of 3 months	52
Table 5	Trimethylamine contents of value added fish during	
	storage of three months	53
Table8	pH values of fresh and dried fish samples	54
Table 9	Total microbial counts in fish samples	55
Table10	Category scores of hedonic test for appearance	56
Table 11	Category scores of hedonic test for Texture	57
Table12	Category scores of hedonic test for Odour	58
Table12	Grand totals of the three hedonic tests of fish samples	59
Table 13	The ANOVA scores for appearance test	59
Table14	The ANOVA scores for Texture test	60
Table 15	ANOVA scores for odour test	60

Lists of figures

Page no

Figure 1	Photo of <i>Sardinella gibbosa</i> 7	
Figure 2	Geographical Distribution of Sardinella gibbosa	8
Figure 3	Capture Production for Sardinella gibbosa (Indonesia)	9
Figure 4	Landings in Sri Lanka-E Indian Ocean (Sardinella gibbosd	a) 10
Figure 5	Dryers	17-18
Figure 6	Plan of a laboratory for sensory evaluation	35
Figure7	Drying curve of the fish sample for the first 6 hours of dry	ing.
	Weight of the fishes in the oven Vs time	49
Figure 8	Moisture contents of the dried fish during the storage of	
	3 months (Moisture content Vs weeks)	50
Figure 9	Moisture contents of the value added fish sample	
	during the storage period(Moisture content Vs weeks)	51
Figure 10	Trimethylamine contents of dried fish Vs storage period	
	Storage of three months. (Moisture content Vs weeks)	52
Figure 11	Trimethylamine content of value added fish samples Vs	
	Storage period	53

Abbreviations

APC	-Aerobic plate counts
cfu	-Colony forming units
DMA	-Dimethylamine
DHA	- Docosa hexaenoic acid
EPA	- Eicosa pentaenoic acid
PUFA	- Polyunsaturated Fatty acids
TBC	-Total bacterial count
TMA	-Trimethylamine
TMAO	-Trimethylamine oxide
TVB-N	-Total volatile basic nitrogen
TVC	-Total Viable count

ACKNOWLEDGEMENTS

I would like to express my sincere thanks to my supervisor, Professor. Arthur Bamunuarachchi, Coordinator Food Science and Technology Programs, Department of Food science and Technology, Faculty of Applied sciences, University Of Sri Jayawardanapura for his guidance, advice and encouragement throughout the period of study to complete it successfully.

Also my thanks goes to Dr.K.K.D.S Ranaweera, the research Coordinator Food Science and Technology Programs, and Head of Department of Food science and Technology, Faculty of Applied sciences, University Of Sri Jayawardanapura for helping me throughout this research work and for the advice given to me regarding my research.

My special thanks are due to the staff of the Department of Food science and Technology, Specially to Mrs.Rupika.Perera, Mr SisiraWeerasinge and Mr.D.P Rubasinge. Also, I would like to take this opportunity to thank all the members of the laboratory staff in the Department of Food science and Technology for the help given.

I am also indebted to my colleagues of the M.Sc course in Food Science and Technology who encouraged and helped me in many ways. I also thank my Husband, father mother and all others too, who helped me in my research in various ways.

ABSTRACT

This report deals with some of quality parameters and sensory evaluation of steamed dried fish and value added fish.

Preservation and value addition of fish salaya is becoming one of the important things nowadays. Because, Salaya fish is a world species of interest to fisheries. Since 1972, the catches of this species have been steadily increasing almost every year and also Salaya provides a good source of protein and contains many vitamins and minerals and essential fatty acids, all of which are vital for the healthy functioning of the body.

The goal of this project was to preserve fish salaya without any chemicals with a minimum cost, even salt was not used in this process of preserving salaya and develops new knowledge to increase the value of underutilized fish salaya. This was achieved by accomplishing good practices of collection and storage of the fish, to retain the chemical, biological, and physical qualities of the fish and developing new and improved value added products. In the process of value addition, spices and vinegar were used as ingredients. These ingredients not only give taste and flavours but also contain a lot of medicinal uses. They also control the microbial activity to some extent.

The process involved were steaming and drying .In this process steaming cooks the fish partially and at the same time kills micro organisms. Drying process

x

reduces the moisture content, thus available water for growth of microorganisms is also reduced.

In this process artificial drier was used for drying. Artificial drier can increase drying rates and produce lower moisture content in the final products, with improvements in fish quality compared with the traditional sun-drying techniques.

The product was subjected to chemical, physical and microbial analyses during the storage period. Sensory evaluation was also done at the end of the storage period.

Moisture contents of the dried fish samples and value added fish samples were determined at every two weeks intervals. The moisture contents gradually increased during the storage period of three months.

The maximum moisture content of the dried fish during the storage period was 9.98%. The fish products can be kept without any damage as long as the moisture content is below 11-12 %.

Trimethylamine contents of the dried fish samples and value added fish samples were determined at every two weeks intervals. The Trimethylamine contents gradually increased during the storage period of three months.

The maximum Trimethylamine (TMA) value of the fish product during the storage was 16.3 mg/ 100g that also did not exceed the marketable level of TMA (26 mg/ 100g).

Microbial analysis were done on dried fish samples and value added fish samples

The results showed that, the microbial content was in the acceptable range (total viable counts of $10^2 - 10^6$ cfu/g are common on whole fish).

Sensory evaluation is used in the testing of fishery products for conformity requirements. Three types of samples (dried fish, Value added fish, and dried fish -salaya bought from supermarket) were evaluated by 12 assessors. From the results of evaluation statistical analyses were done.

Sensory evaluation also proved that, there was no significant difference among the fishes preserved by this process and the dry fish already available in the market.

Considering the quality attributes, it could be concluded that the preserved fishes is marketable and consumable within three months of its production.