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A bstract—Existing numerical methods to solve univariate non
linear equations sometimes fail to return the required results. 
We propose a modified firefly algorithm [MOD FA] with a self
tuning ability to solve a given univariate nonlinear equation. 
Our modification is capable of finding almost all real as well 
as complex roots of a nonlinear equation within a reasonable 
interval/range. The modification includes an archive to collect 
best fireflies and a flag to determine poorly performed iterations. 
It is also capable of tuning the algorithm-specific parameters 
while finding the optimum solutions. The self-tuning concept 
allows the users of our application to use it without any prior 
knowledge of the algorithm. We validate our approach on 
examples of some special univariate nonlinear equations with real 
as well as complex roots. We have also conducted a statistical 
test: the Wilcockson sign rank test By conducting a comparison 
with the genetic algorithm and differential evolution with same 
modifications [MOD GA] [MOD DE] and with the original firefly 
algorithm [FA], we confirm the efficiency and the accuracy of our 
approach.

I. Introduction

Nonlinear equations play a vital role in most of the 
real world applications. Many fields, including engineering, 
mathematics, chemistry, computer science and economics 
often require applications of univariate as well as systems of 
nonlinear equations. Solving a univariate nonlinear equation 
f ( x )  = 0 is finding roots a,  such that / ( a )  =  0. Providing 
solutions for such nonlinear equations is challenging and the 
common method of solving them is the use of numerical 
methods; specially the techniques based on Newton’s 
method [1], [2], [3], [4]. Numerical methods often have 
requirements to be fulfilled to begin with the process of 
finding approximations. These requirements can be considered 
as drawbacks of numerical methods that users encounter 
when using them to solve nonlinear equations. Need of the 
derivative information and the continuity of the function, 
evaluation of large matrices, inability to give more than one 
approximation at a time, depending over the sensitivity of the 
initial guess and the slow convergence are some of the major 
drawbacks. Thus, finding better approaches to solve nonlinear 
equations are still open for research.

In practice, most nonlinear equations are solved using 
Newton’s method or its variants. Weerakoon & Fernando

have suggested an improvement to the existing Newton’s 
method in their paper: A Variant of Newton’s Method 
with Accelerated Third-Order Convergence [1]. The method 
involves changing the derivation of Newton’s method. The 
derivation of the Newton’s method involves approximating 
an indefinite integral of the derivative of the function by a 
rectangle. Weerakoon & Fernando have modified it to be a 
trapezium so that the error of the approximation is reduced. 
The researchers proved that the order of convergence of the 
suggested modification is three. In fact, for some cases it is 
even higher than three. The main concern in this research 
was on the speed of convergence to the approximation. But 
this method also contains the aforementioned drawbacks of 
numerical methods such as the need for derivative calculation.

Apart from the numerical methods, heuristics were also 
being proposed to solve nonlinear equations. A continuous 
global optimization heuristic: Continuous Greedy Randomized 
Adaptive Search Procedure known as C- GRASP has been 
adopted by Michael J. Hirsch et al to solve a given system 
of nonlinear equations [5]. They address the problem of 
finding all the roots of a system of equations assuming that 
all roots are real. The heuristic does not use the derivative 
information of the equations of the system. The attempt of 
the researchers was successful, but they haven’t addressed the 
area of complex roots.

Nature inspired algorithms; being meta-heuristic for most 
of the time, are now becoming the dominator of the world of 
optimization algorithms. Compared with other methods, these 
algorithms have many advantages. Some examples are genetic 
algorithm, differential evolution, particle swarm optimization, 
harmony search, firefly algorithm, cuckoo search and others 
[6]. [7], [8], [9], [10], [11]. The meta-heuristic property makes 
them robust so that these algorithms are capable of touching 
a variety of problems [12], [13], [14]. Since the applicability 
of these algorithms is immense, researchers have done some 
experiments over adopting nature inspired algorithms to solve 
nonlinear equations.

Use of genetic algorithm to solve nonlinear equations has
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been carried out in a research done by Nikos G. Mastorakis 
[15]. Here, solving a system is viewed as an optimization 
problem and the objective is to minimize the square root 
of the function value. The paper addresses the problem of 
finding all possible roots as well as systems of nonlinear 
equations, but sufficient information about the results were 
not provided. In the univariate case, he has tried nonlinear 
equations with the maximum power of two. The research is 
important in providing information that GA can be adopted 
for the desired task.

In several other research, use of GA to solve nonlinear 
equations are addressed. A hybrid algorithm implemented 
with genetic algorithms and particle swarm optimization 
also has been proposed in [16]. Harmony search; A new 
meta-heuristic algorithm has been also proposed to solve 
systems of nonlinear equations [17].

Most of these approaches have focused on solving systems 
of nonlinear equations rather than a single equation. In almost 
all these researches, they have dealt only with real roots and 
solving for complex roots is not mentioned. The problem of 
finding all roots in a reasonable range within a single run 
is also not addressed. Another important area to consider 
is the algorithm dependent parameters. When using nature 
inspired algorithms to solve any optimization problem, these 
parameters should be tuned properly in order to achieve 
accurate solutions. The values of these parameters can be 
different from problem to problem. The most convenient 
approach is to suggest a way to tune the parameters of the 
algorithm while optimizing the given problem.

In the present work, we address the problem of solving 
univariate nonlinear equations for real as well as complex 
roots using a modified firefly algorithm. Our modification 
includes an archive and a flag. The modified algorithm is 
capable of tuning the algorithm dependent parameters while 
solving a given nonlinear equation.

For a better understanding of our research problem, we 
have defined it as follows.
Let /  be a function s.t. /  : D  -> R  where D  C C ,where C  is 
the set of Complex Numbers. The problem is to find all x  € D  
s.t. f ( x )  =  0, without requiring either the differentiability or 
the continuity of the function / .  Thus we need to find x  € D 
s.t. \f{x)\  =  0. However, since the function f ( x )  may have 
multiple roots, the optimization problem |/(a:)| =  0, also will 
have multiple optimal solutions. Our objective turns out to 
be finding all such optimal solutions while optimizing the 
algorithm dependent parameters.

The remainder of this paper is structured as follows. Section 
II provides a brief literature related to the firefly algorithm. In 
Section III, we introduce the modified firefly algorithm and 
its capabilities. Section IV points out the numerical examples 
and the algorithm independent parameters used and the results

obtained by comparing the algorithm with the other three 
meta-heuristics, MOD GA, FA and MOD DE. Finally, we draw 
conclusions briefly in Section V.

II. Firefly Algorithm

Firefly is an eye catching creature in the night sky. The 
fascinating flash they emit is a way of communicating between 
them. Its primary purpose is thought to be to attract mates. The 
main idea of the firefly algorithm is to imitate this flashing 
behavior of the fireflies to attract them towards brighter ones. 
Xin-She Yang formulated the original firefly algorithm around 
2008 [10]. The algorithm is based on some assumptions about 
fireflies behavior.

1) Fireflies’ attraction to each other is gender independent.
2) Attractiveness is proportional to their brightness, for 

any two fireflies, the less brighter one is attracted by 
(and thus moves toward) the brighter one; however, the 
brightness can decrease as their distance increases; If 
there is no brighter one than a particular firefly, it moves 
randomly.

3) The brightness of a firefly is determined by the value of 
the objective function.

Algorithm 1 : Pseudo code of the basic FA 
l: Begin;
2: Initialize algorithm parameters:
3: MaxGerv. the maximum number of generations
4: 7 : the light absorption coefficient
5: /?o: initial brightness of a firefly
6: d: the domain space
7: Define the objective function f ( X ) ,  where X  = 

( x i , . . . , x d)T
8: Generate the initial population of fireflies, Xi (i =

1 , 2 , . . . , n)
9: Determine light intensity of /; at i th firefly Xj via f ( X i) 

10: while t < M axG en  do 
ll: for i =  1 : n  (all n  fireflies) do
12: for j  =  1 : n  (n  fireflies) do
13: if Ij > It then
14: Move firefly i towards j  by using equation (1);
IS: end if

2
16: Attractiveness varies with distance r  via e~~<T

using equation (2);
17: Evaluate new solutions and update light intensity;
18: end for
19: end for
20: Rank the fireflies and find the current best;
21: end while
22: Post process results and visualization;

This modem algorithm grasped the attention of the world 
of optimization. Because of its success many researches were 
carried out to check its adaptability to solve a variety of 
optimization problems [13], [18], [19], [20],
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The most general way of formulating the initial population 
is to define it randomly. In the original firefly algorithm, the 
user has to define the algorithm dependent parameters for the 
selected problem. Objective function should also be defined 
according to the problem available. After these initial steps, 
the fireflies in the population start moving towards brighter 
fireflies according to the following equation.

Xi =  Xi +  f}{xj — Xi) +  a(rand — 0.5) (1)

where
P = A>e("V) (2)

Pa is the attraction at r =  0
The second term of the equation(l) is due the attraction 

between f irefly i (xi) and f ire f ly j  (xj) and the third 
term is the randomization term. The value of a  is drawn 
from a Uniform or Gaussian distribution. These two terms 
are known as information based movement and the random 
movement. The information based moment exploits the 
current firefly to build a new firefly. The given firefly’s 
brightness and the distance between another brighter firefly 
is taken into account when modifying its solution. The 
random movement creates some random solutions. It is like 
the mutation operator in genetic algorithms. In this random 
process the value of the randomization parameter a  plays an 
important role in maximizing performance. The randomness 
should control properly, otherwise it may lead to poor 
performance. The best practice is to reduce the randomness 
gradually. For this, Yang has introduced the following method.

a  =  qo<5 where S € [0,1] (3)

Proper parameter selection should be done in order to 
achieve the expected performance of the algorithm. In the 
original implementation Po = 1, a € [0, 1] and 7 e  [1, 100] 
are suggested to be applied appropriately. But in our 
approach, we introduce the framework suggested by Yang et 
al which allows the algorithm to tune its own parameters [21]. 
Yang has proved that the original algorithm’s performance 
is relatively high when compared with genetic algorithm 
and particle swarm optimization algorithm. Popular two 
dimensional optimization problems were used in his original 
implementation to prove the idea.

Regardless numerous researches have been carried out using 
the firefly algorithm to solve various optimization problems, 
FA has been rarely applied to any kind of nonlinear root find
ing problem. Fascinated by its performance we are motivated 
to see the captivating behavior of the firefly algorithm in the 
process of solving univariate nonlinear equations.

III. Modified Firefly Algorithm

In this section , we will explain our adoption of the firefly 
algorithm to solve univariate nonlinear equations having real 
and complex roots.

A. Modified Firefly Algorithm for univariate nonlinear equa
tions

In our approach each firefly in the population represents a 
possible approximation to a root. Apart from that, a firefly 
will also carry a possible approximation for the algorithm 
dependent parameters. The objective function is defined as 
the absolute value of the function, evaluated at a specific root 
approximation. To calculate the distance between two fireflies, 
we used the distance between the two complex numbers that 
represent those two fireflies.

Algorithm 2 : Pseudo code of the proposed firefly algorithm 
l: Begin;
2: Initialize algorithm independent parameters:
3: MaxGen: the maximum number of generations
4: Pa- initial brightness of a firefly
5: Initialize range for algorithm dependent parameters:
6: ' 7 : the light absorption coefficient
7: 6: the randomness reduction factor
8: Define the objective function f ( X )
9: Generate the initial population of fireflies, Xi {i =

1,2 ,. . . , n)
10: Determine light intensity of U at i th firefly Xi  via f (Xi )  
ll: while t < M axG en  do 
12: flag=true
13: while f lag  =  true & t <  M axG en  do
14: for i = 1 : n  (all n  fireflies) do
15: for j  =  1 : n  (n fireflies) do
16: if Ij > Ii then
17: Move firefly i towards j  using equation (1);
18: end if 2
19: Attractiveness varies with distance r via e 1T
20: Evaluate new solutions & update light intensity;
21: end for
22: end for
23: Find the matching fireflies with the eligibility criteria

abs(f(x))  < 0 .0 0 1 ;
24: Put them into the archive and replace their positions

with random fireflies;
25: if no fireflies matching with eligibility criteria then
26: flag=false
27: end if
28: if flag=false then
29: count= random integer between 0 and n;
30: Create random fireflies up to count and replace the

population;
31: end if
32: end while
33: end while
34: Post-process fireflies in the archive and get the tuned 

parameter values

The fireflies will move towards brighter fireflies according 
to the equation( 1). After an iteration, better fireflies are 
noted and they are put into an archive. Their positions
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are replaced by random fireflies. The flag will determine 
the poorly performed iterations and new fireflies will be 
introduced to the population.

Finally, after a fixed number of iterations, the output will be 
the root approximations and the suitable algorithm dependent 
parameter values for the problem.

a Weierstrass function. The following is a Weierstrass 
function which has 25 real roots within [-20, 20].

W(x)
i= 0  '  '

(x) where n = 3 (5)

3) Equation(6) represents a popular trigonometric func
tion with discontinuities. It has 13 roots in [-20, 20].

B. Self tuning property
As we have discussed in section II, the firefly algorithm has 

several algorithm dependent parameters including a , 7 , 0  and 
additionally the randomness reduction factor 6. According to 
the equation(2), the value of 0  depends on three factors; 
0o, 7  and the distance between two fireflies r. We initiate 
0o =  1 and the value of r should be calculated during the 
iterations, so that 7  is the only factor that should be controlled.

In equation^), the value of a  depends on a 0 and 5. With 
the experience obtained through experimentations, we initiate 
»o =  2.3, so that the consideration should be paid on <5. Here 
the two parameters to be tuned will become 7  and <5. The 
purpose of using self tuning for our study is to let the users 
use the algorithm without algorithm specific parameter inputs.

IV. Experimentation

The experiments performed in this study are detailed here. 
In section A, the numerical examples used for the study 
are explained. Section B is dedicated to present the results 
obtained by applying MOD FA, FA, MOD GA and MOD DE 
to the mentioned equations. Finally, in Section C, a statistical 
analysis of the results are shown.

All the work of this research has been carried out on an Intel 
Core i3 laptop, with 2.30 GHz and a RAM of 2GB. MATLAB 
has been used as the programming language. More than 
30 univariate nonlinear equations from various representative 
categories have been used for the study. Each instance, has 
been run for 100 times and the mode of the number of roots 
are taken for the comparative study. The accuracy of a root is 
set to be 10 -2 .

A. Numerical Examples
Nonlinear functions having real as well as complex roots 

selected are briefly explained here.
1) The following nonlinear function has 51 real roots 

within the given interval (adapted from Goldberg and 
Richardson, 1987 [22]).

y = sin3(5irx) where x  € [—5,5] (4)

2) The Weierstrass function is an example of a patho
logical real-valued function on the real line. This type 
of functions possess the property of being continuous 
everywhere but differentiable nowhere [23]. It is named 
after its discoverer Karl Weierstrass. Since most of the 
numerical approaches need to evaluate derivatives, it is 
difficult to employ a numerical approach to find roots of

y — tan x  (6)

4) The following function has 32 real roots scattered in a 
large interval [-100,100]

y  =  (sin(x) — l)(x  — 3) (7)

5) The following parabolic function has 6 roots. Since the 
derivative at 0 is equal to zero, the Newton’s method 
cannot be applied to approximate the roots at zero.

y = sin{x) -I- 1 where x  € [—20, 20] (8)

Apart from the above mentioned equations we have 
selected several other test functions having real roots, 
(see Table I).

Equation Interval Number 
of roots

1 y  = x a in { l / x )  — 0.2e” x [-3. 1] 3
2 y  = (x  -  2)3 with multiple roots H .4 ] 3
3 y =  x4 — 2x2 +  1 with 2 multiple roots K  4] 4
4 y  =  (x — l) (x  +  2)(x  + 1)3 with 2 multiple roots [-3. 3] 4
5 y =  10x4 -  27Ox2 -  140x +  1200 [-6,6] 4
6 y  =  (x s in x )3 +  e<*ac°s *+"i"*> -  28 [-10, 10] 6
7 y =  cos x [-20, 20] 12
8 y =  3e* -  4coa(x) [-40, 2] 14
9 y  =  x s tn (x ) +  O.lx [-30, 30] 19
10 y =  tan (x ) — x [-40,401 25
u y  =  c o s 3 ( 2 x ) [-40,40) 52
12 y =  sin(xa + 1 0 ) [-10. 10] 64

TABLE I: Nonlinear functions used to test the algorithm

6) The suggested method is capable of finding complex 
roots of a univariate nonlinear equation. The following 
polynomials were taken as test functions for the study 
(see Table II).

Equation Range Number of 
roots

1 y  = x 2 +  1 [-2, 2]X[-2, 2] 2 (0 real)
2 y as x 3 +  2x  +  10 [-2, 4]X[-2, 4] 2 (0  real)
3 y x 3 +  2x2 +  3x +  4 [-2.5, l)X[-2.5, 1] 3 (1 real)
4 y =  x 4 — 2 x 3 — 3x — 2 [-1, 2.5]X[-1, 2.5] 4 (2 real)
5 y  =  z s -  3x4 +  3x3 -  2 x 3 -  5 [-1, 3]X[-1, 3] 5 (1 real)
6 y  — x 1 — x °  +  2xb —3x4 + 3 x 3 —2 x 3 —5 [-1, 2]X[-1, 2] 7 (1 real)
7 y  =  x 8 +  2 x 7 +  3 x 6 +  4 x 5 4- 5x4 +  

6x3 +  7x3 +  8x +  9
[-2, 2]X[-2, 2] 8 (0 real)

8 y ss x 13 — Ox11 +  x 10 — 5 [-1.6]X[-1, 6] 12 (2 real)
9 V =  x 13 -  2 x 13 +  1 [-1, 2]X[-1, 2] 13 (3 real)

TABLE II: Testing the algorithm with nonlinear functions 
returning complex roots

Range of the function is the area we seek for the roots. 
According to the notation we adopted, [-1,2]X [-1,2] 
region describes the area ABC D  shown in Fig. 1.
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It is clear that after some number of iterations, the parameter 
values are stabilizing around some optimum value.

Equation Optimized 7 
value

Optimized S 
value

1 y = 8ina (5trx) 90.5251 0.8978
2 y =  sin(x) +  (l/2)s*n(2x) +  ( l/4 )s in (4  * x) +  

( l / 8)s in (8 * x)
79.7420 0.9077

3 y  =  ta n(x) 91.3400 0.9636
4 y  = (s in(x)  -  l)(x  -  3) 80.1758 0.9077
5 y  = s in(x) +  1 96.2917 0.8277
6 y =  x2 +  1 77.1285 1
7 y  =  x a 4- 2x +  10 77.2168 0.8399
8 y =  x3 +  2xa +  3x +  4 79.8629 0.8668
9 y = x* — 2xa — 3x — 2 80.3693 0.8000
10 y = x* -  3 i 4 +  3x3 -  2x3 -  5 89.5486 0.8235
11 y =  x 7 — x6 +  2x5 — 3x4 +  3x3 — 2xa — 5 94.5166 0.8326
12 y  =  x8 +  2x7 +  3x6 +4a:5 + 5x4 +  6x3+ 7 x 2-t-8x+9 80.1703 0.8795
13 y =  x ia — 6x 11 +  x 10 — 5 86.8613 0.9067
14 y  =  x 13 — 2x 13 +  1 84.4947 0.8638

B. Results obtained by the modified firefly algorithm and the 
other meta-heuristics

As mentioned in the beginning of this section, an exper
imentation has been performed to prove the performance of 
the proposed modified firefly algorithm. The most important 
feature of this algorithm is the self tuning ability. The algo
rithm mainly tune 7  and S parameters, a  and /? values change 
accordingly. We implemented the 4 algorithms and for all, the 
initial population were generated randomly. Each algorithm 
finishes one execution after 100 iterations. 100 such runs were 
carried out to obtain the results.

y =  « n a (57rx)
-5.000 -4.8001 •4.6001 -4.4002 -4.2033 -4.0052
-3.8001 -3.6027 -3.4029 -3.2034 -3.0001 -2.8029
-2.6006 -2.4000 -2.2021 -2.0053 -1.8007 -1.6005
-1.4001 -1.2003 -1.0022 -0.8018 -0.6016 -0.4023
-0.2017 0.0005 0.2006 0.4014 0.6031 0.8020
1.0019 1.2002 1.4010 1.6016 1.8010 2.0004
2.2010 2.4022 2.6007 2.8046 3.0003 3.2019
3.4000 3.6001 3.8002 4.000 4.2009 4.4007
4.6006 4.8012 5.0000

TABLE III: 51 roots given by the modified firefly algorithm
for y =  sin3(bitx)

y= lan(x)
-18.8509 -15.71089 -12.5747 -9.4323 -6.2914
-3.1500 0.0015 3.1334 6.2778 9.4164
12.5577 15.7009 18.84381

TABLE V: Algorithm dependent parameter values obtained 
for different equations by MOD FA
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Fig. 2: Variation of the average gamma values and average 
delta values over iterations (Graphs were drown at randomly 
selected 5 runs)

TABLE IV: 13 roots given by the modified firefly algorithm jq facilitate the usability of this work, the parametrization 
for y =  tan(x) used for the four approaches are summarized in Table VI.

The modified algorithm tunes its algorithm dependent 
parameters while optimizing the problem of solving a 
nonlinear equation. Table V illustrates the average parameter 
values obtained by the MOD FA for the main test functions.

To emphasize the parameter tuning process used in our 
study, we have obtained the average 7  and S values for each 
iteration for the equation(4) for 5 random instances [Fig 2].

Table VII shows the results obtained by running the al
gorithm 100 times to solve 14 nonlinear equations. Results 
are formatted as; average number of roots found, (maximum 
number of roots found / total roots)*100%. So 51, (100%) 
means the average number of roots found within 100 runs is 
51 and the (maximum number of roots found in a run /  total 
roots)*100 is 100%.

2016 IEEE Congress on Evolutionary Computation (CEC) 1481



M O D  FA FA M O D  G A M O D  D E

Parameter Value Param eter Value Param eter Value Param eter Value

Pop Size 600 Pop Size 600 Pop S ize 600 Pop S ize 600

a 2.3 a 2.3 C rossover A rith m e tic  crossover (0.95 p ro b a b ility ) D iffe re n tia l w eight 0.2

A) 1 0o 1 M uta tion S ubtraction  operator (0.005 p ro b a b ility ) C rossover p ro b a b ility 0.95

p Tuned by M O D  FA p Tim ed by FA

7 Tuned by M O D  FA 7 Tim ed b y FA
s Tuned b y M O D  FA s Tim ed b y FA

TABLE VI: Parametrization of the Mod FA, FA, MOD GA and MOD DE for the nonlinear equations

Equation # MOD FA MOD MOD
of FA GA DE
roots

1 y  =  s in 3(57rx) 51 51,(100%) 17,(37%) 50,(100%) 51,(100%)
2 25 25,(100%) 12,(52%) 25,(100%) 20,(92%)

3 y  =  tan{x) 13 13,(100%) 6,(53%) 13,(100%) 12,(100%)
4 V =  (s in (x ) -  

l ) ( x - 3 )
32 30,(100%) 3,(9%) 26,(88%) 26,(84%)

5 y  =  s in (x) +  1 6 6,(100%) 6,(100%) 6,(100%) 6,(100%)
6 y  =  x 1 + 1 2 2,(100%) 2,(100%) 2,(100%) 2,(100%)
7 y  = x 2 +  2x +  10 2 2,(100%) 2,(100%) 2,(100%) 2,(100%)
8 y  =  x 3+ 2 x 2+ 3 x + 3 3,(100%) 3,(100%) 3,(100%) 1,(33%)

9 y  =  x4 — 2x2 —3x— 4 4,(100%) 4,(100%) 3,(100%) 2,(50%)

10 y  — x5 — 3x4 +
3x3 — 2x2 -  5

5 5,(100%) 5,(100%) 3,(60%) 1,(20%)

11 y  = x 7 — x 6 + 2 x 5  — 
3x4 + 3 x3 - 2 x2 —5

7 7,(100%) 7,(100%) 1,(14%) 1,(14%)

12

V =  E i . x 8- ‘
4 = 1

8 8,(100%) 6,(100%) 4,(50%) 2,(25%)

13 y  =  x 12 — 6 X 11 +  
x 10 — 5

12 12,(100%) 9,(83%) 3,(25%) 1,(16%)

14 y  = x 13-  2x13 + 1 13 13,(100%) 12,(92%) 4,(31%) 2,(15%)

TABLE VII: Performance of the algorithms for real and 
complex roots over 100 runs

According to the results in Table VII, we can conclude that 
MOD FA outperforms the results obtained by FA, GA and 
DE, obtaining almost all real as well as complex roots of the 
tested 14 equations. Here the conclusions are taken from the 
ground level view so that the statistical analysis has been used 
to conclude the idea firmly. The guidelines provided by Derrac 
et al were followed to perform this statistical analysis [24],

C. Statistical Analysis
In addition we have conducted a statistical analysis to 

compare the performance of the modified firefly algorithm 
with other algorithms. Wilcoxon signed-rank test is a 
nonparametric test that can be applied to two related samples 
[25], It can be used as an alternative to the paired Student’s 
t-test or the t-test for dependent samples when the population 
cannot be assumed to be normally distributed [26]. We used 
three of two related samples; Sample results of Mod FA and 
FA, Mod FA and MOD GA and MOD FA and MOD DE. 
20 different nonlinear equations were used for the statistical 
analysis. We execute each algorithm 100 times and get the 
mode number of roots for each equation to apply the test. It

has been conducted on Minitab statistical software to test the 
following hypothesis.

Hq : There is no difference between two algorithms 
Hi : There is a difference between two algorithms

Equation # MOD 
of FA 
roots

FA MOD
GA

MOD
DE

i y  =  s in 3(57rx) 51 51 14 51 51
2 y  =  ton(x) 13 13 1 13 12
3 25 25 7 25 20

4 y  = (s in (x ) -  l) (x  -  3) 32 32 2 32 28
5 y  =  s in (x ) +  1 6 6 1 6 6
6 y  =  cos(x) 12 12 5 12 12
7 y  =  (x -  l) (x  +  2)(x +  l ) 3 4 4 4 4 4
8 y  «  x s in (x ) +  O.lx 19 19 2 16 5
9 y  =  s in (x 2 +  10) 64 64 3 57 36
10 y  — coa( 2x)3 52 52 5 50 52
11 y  =  3 * exp(x) — 4cos(x) 14 14 8 14 8
12 y  =  x 3 +  1 2 2 2 2 2
13 y  *= x 2 4- 2x +  10 2 2 2 2 2
14 y  =  x 3 *f 2x2 +  3x +  4 3 3 3 1 1
15 y  =  x4 — 2x3 — 3x — 2 4 4 4 4 2
16 y ^ x 5 —3 * x 4 +  3 * x 3 — 2 * x 3 - 5  5 5 5 3 1
17 y  s= x 7 — x 6 +  2x5 — 3x4 +  3x3 —2x® — 5 7 7 7 1 1
18 v =  E L i  ‘

y  = x l i -  6xu  +  x 10 -  5
8 8 8 2 2

19 12 9 12 3 1
20 y  =  x 13 -  2x13 +  1 13 13 12 4 2

TABLE VIII: Results of the proposed MOD FA with other 
three algorithms for the statistical analysis

The test statistic is in the following form.
N

fV =  ^ [ s 5 n(x2,i - x 1 ,j).fZi] (9)
i= 0

where:
N : sample size
Ri : Rank of the ith  pair

Table VIII shows the equations and the number of roots 
repeated most (Mode), obtained for each algorithm in 
participating the Wilcoxon signed-rank test. The results 
demonstrate that MOD FA performs well for both real and 
complex root situations where MOD GA and MOD DE are 
successful in working on real roots. FA on the other hand 
lucky enough only for the complex root situation however its 
performance is very poor when it handles real roots.
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The Wilcoxon signed-rank test has three “assumptions”. 
The dependent variable should be measured at a continuous 
level or ordinal level, the independent variable should consist 
of two categorical, “related groups” and the distribution of the 
differences between the two related groups are symmetrical in 
shape happen to be these 3 assumptions. Here we have three 
of two related groups; Number of roots obtained by MOD FA 
and FA, MOD FA and MOD GA and MOD FA and MOD DE.

Wilcoxon Signed Rank Test: Difference between MOD 
FA & FA
Test of median = 0.000000 versus median not = 
0.000000

N N Wilcoxon P Estimated
for
Test

Statistic Median
Difference 
between MOD FA 
& FA

20 12 76.0 0.004 8.500

TABLE IX: Minitab output for the hypothesis tested over 
MOD FA and FA

Table IX shows the Minitab output for the hypothesis tested 
over MOD FA and FA. We have conducted the test at 0.05 
significance level (a). The obtained P  value (0 .004) is less 
than a , (0.004 <  0 .05) so we reject Ho\ That is, we accept 
that there is a difference between MOD FA and FA. Then 
we have calculated the median values for both algorithms. 
Results are shown in the table X.

Wilcoxon Signed Rank Cl: MOD FA, FA

Confidence
Interval

N Estimated Achieved Lower Upper
Median Confidence

MOD FA 20 12.8 95.0 7.5 27.5
FA 20 5.00 95.0 3.00 7.00

TABLE X: Median values obtained by MOD FA and FA for 
20 different nonlinear equations

The estimated median is higher for MOD FA, so that we 
can conclude that the performance of the MOD FA is better 
than of FA.

Same results obtained for the algorithms MOD FA and 
MOD GA are presented in table XI and XII and the same 
can be obtained for MOD FA and MOD DE pair of algorithms.

Wilcoxon Signed Rank Test: Difference between 
MOD FA & MOD GA

Test of median = 0.000000 versus median not = 
0.000000

N N
for
Test

Wilcoxon
Statistic

P Estimated
Median

Difference 
between MOD FA 
S MOD GA

20 9 45.0 0.009 1.500

TABLE XI: Minitab output for the hypothesis tested over 
MOD FA and MOD GA

Wilcoxon Signed Rank Cl: MOD FA, MOD GA

Confidence
Interval

N Estimated Achieved Lower Upper
Median Confidence

MOD FA 20 12.8 95.0 7.5 27.5
MOD GA 20 9.8 95.0 4.0 26.0

TABLE XII: Median values obtained by MOD FA and MOD 
GA for 20 different nonlinear equations

Here also the P  value is less than the significance level 
(0.009 <  0 .05), so that we reject the null hypothesis and the 
estimated median value of MOD FA is higher than MOD 
GA. The analysis shows that MOD FA is so far the best 
performer in obtaining almost all roots of a given nonlinear 
equation.

As a final supposition, we can say that using similar 
nonlinear functions, the proposed MOD FA outperforms the 
other alternative algorithms with similar and acceptable run 
times and showing a better robustness and convergence. The 
improvements are significant for most cases. For this reason, 
we can say that the presented MOD FA is a promising 
approach to solve univariate nonlinear equations with real 
as well as complex roots, meeting, in this respect, the main 
objective of this study.

V. Conclusions and further work

In this work we have presented a modified firefly algorithm 
to solve univariate nonlinear equations. Our approach 
uses an archive and a flag to determine real as well as 
complex roots impressively. The algorithm does not need the 
differentiability and the continuity of the function and does 
not depend on the initial guess. In addition, we have used 
the framework proposed by Xin-she Yang and the fellows to 
tune the algorithm specific parameters. It can be stated as 
the most important feature of this algorithm since it optimize 
the algorithm dependent parameters while optimizing the 
problem itself. This is advantageous for the users who do not 
know the behavior of the firefly algorithm.

In order to prove the ability of our algorithm, we have 
compared its performance on more than 30 nonlinear 
functions with the original firefly algorithm, the modified 
genetic algorithm and with the modified differential evolution 
algorithm. A statistical test has been conducted with the 
obtained results; Wilcoxon signed-rank test. Overall, the 
MOD FA performs well in obtaining real as well as complex 
roots than the other three algorithms.

It is important to highlight that the main goal of this 
study is not to find an optimal solution to a given nonlinear 
function. Hence we kept the accuracy of a solution to be 
10~2. We have already shown in [27], the MOD FA is 
capable of reaching for more than this accuracy, but the
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principal objective of this research is proving that the FA 
can be easily adapted to solve nonlinear equations having 
complex roots, without concerning the differentiability or 
the continuity of the function and that the MOD FA is 
a promising approximation method for solving univariate 
nonlinear equations over large intervals/ regions as well.

In this work, we have paid our attention on two things, 
solving a univariate nonlinear equation to find all real as 
well as complex roots simultaneously and tune the algorithm 
dependent parameters using Yang’s framework. To optimize 
parameters there could be some other methods. For this 
reason, as a future work, we would like to search on some 
additional parameter optimization techniques which can be 
adopted to tune algorithm dependent parameters in nature 
inspired algorithms. Additionally, we know there exist a large 
number of nature inspired algorithms; we have used only 
three algorithms to compare the capability of our algorithm. 
But we would prefer wider experimentations on other meta 
heuristics as well since it can be an advantage for the future 
of root approximations of univariate as well as systems of 
nonlinear equations. Inspired by the results obtained from our 
experiment, we are planning to expand the study on solving 
systems of nonlinear equations.
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