Development and validation of a reference marker for identification of aerobic and anaerobic bacteria associated with diabetes chronic wound ulcers using PCR denaturing gradient gel electrophoresis

Dilhari KAA1, Gunasekera TDCP1, Fernando SSN1, Weerasekera DD2, Bulugahapitiya U3, Pathirage S4, Sisson CH4, McBain AJ5, Weerasekera MM1
1Department of Microbiology, 2Department of Surgery, Faculty of Medical Sciences, University of Sri Jayewardenepura, 3Endocrinology Unit, Colombo South Teaching Hospital, 4Department of Bacteriology, Medical Research Institute, Colombo, 5Department of Pathology and Molecular Medicine, University Otago, New Zealand, 6Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK

Introduction: Diabetes chronic wounds consist with a diverse microbial community and unculturable species may be highly prevalent.

Objectives: This study aimed to establish a bacterial reference marker consisting of a group of chronic wound related bacteria, using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) for profiling of bacteria in diabetes chronic wound infections.

Methods: DNA was extracted from the known wound bacterial strains. PCR-DGGE was performed using eubacterial specific primers targeting V2-V3 region of 16S rDNA. DGGE was performed using a 30-55% denaturing gradient. Migration position of each organism was detected on DGGE gel and important organisms were selected. Equal volume from PCR products of each selected organism was mixed, diluted with gel loading dye in 1:1.5 ratio and used for all DGGE gels. The ladder was then subjected to species identification of fifteen tissue debridement specimens obtained from diabetes chronic wound ulcers. The identification efficacy was tested by sequencing.

Results: DNA of bacterial pathogens which showed different migration distances on the gel were combined and used as a reference panel. This bacterial ladder consisted of eleven different bacterial species including Bacteroides sp., S. aureus, Acinetobacter sp., P. aeruginosa, Streptococcus Group A and Group B sp., E. faecalis, Providencia sp., Veillonella sp., E. coli and Enterobacter sp. According to the reference panel, Pseudomonas species were abundant. Further the results were confirmed by sequencing.

Conclusion: Reference marker allows comparative analysis of DGGE patterns and can be used as a tool for presumptive identification of polymicrobial microbiota in chronic wound infections.

Impact of routine laboratory culture media on in-vitro biofilm formation of Pseudomonas aeruginosa, Staphylococcus aureus and Enterococcus faecalis

Wijesinghe GK1, Dilhari KAA1, Buddhika G2, Gunasekera TDCP1, Fernando SSN1, Kottegoda N2, Samaranayake LP3, Weerasekera MM1
1Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, 2Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura 3Health Science Center, Kuwait University, Kuwait City, Kuwait

Objectives: This study was aimed to determine the efficacy of four routine laboratory culture media on biofilm formation of Pseudomonas aeruginosa, Staphylococcus aureus and Enterococcus faecalis.

Methods: A sterile flat bottom 96 well plate was inoculated using 0.5 McFarland equivalent standard cell suspension of P. aeruginosa, S. aureus and E. faecalis and the growth rate of planktonic cells was quantified by measuring the optical density (OD492) at two hour intervals. Influence of culture medium on adhesion of bacteria as an initial step of biofilm formation in the presence of four culture media