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Robust Regenerator Allocation
in Nonlinear Flexible-Grid Optical
Networks With Time-Varying Data Rates

Li Yan, Yuxin Xu, Maité Brandt-Pearce,

Abstract—Predeployment of regenerators in a selected
subset of network nodes allows service providers to
achieve rapid provisioning of traffic demands, high utiliza-
tion, and reduced network operational costs, while still
guaranteeing lightpath quality of transmission. Enabled
by bandwidth-variable transceivers in flexible-grid optical
networks, optical channel bandwidths are no longer fixed
but constantly changing according to real-time communi-
cation requirements. Consequently, the data-rate-variable
traffic together with other new network features intro-
duced by flexible-grid networks will render the regenera-
tor allocation very difficult due to the complicated network
states. In this paper, we investigate how to allocate regen-
erators robustly in flexible-grid optical networks to combat
physical-layer impairments when the data rates of traffic
demands are random variables. The Gaussian noise model
and a modified statistical network assessment process
framework are used to characterize the probabilistic distri-
butions of physical-layer impairments for each demand,
based on which a heuristic algorithm is proposed to select
a set of regenerator sites with minimum blocking probabil-
ities. Our method achieves the same blocking probabilities
with on average 10% less regenerator sites compared with
the greedy constrained-routing regenerator allocation
method, and obtains blocking probabilities two orders of
magnitude lower than that of the routing and reach method
with the same number of regenerator sites.

Index Terms—Network optimization; Physical-layer
impairments; Regenerator placement; Variable traffic.

I. INTRODUCTION

he rapid rise in the use of mobile Internet, video

streaming, and cloud computing services has led to
increasing data volumes and diversified traffic requests,
which put severe pressure on backbone optical networks.
Flexible-grid optical networks have been proposed to relax
the rigid spectrum grid requirement of wavelength-
division multiplexing (WDM) networks and offer much
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higher efficiency by adaptively assigning spectrum to
traffic demands [1].

Moreover, new network and transmission techniques are
also introduced to further improve the network capacity.
Enabled by bandwidth-variable wavelength cross-connects
(BV-WXCs) and bandwidth-variable transceivers (BV-T's)
[2], network operators can dynamically change the band-
widths of optical channels according to real-time communi-
cation requirements and thus, achieve cost-effective and
highly available connectivity services. For example, data
centers may require more bandwidth from the network
for data backup during night hours. The video-on-demand
services of individual users are usually high during eve-
ning hours, and a large amount of inter-office traffic of
enterprises is transported during the business hours [2,3].
During hours of low bandwidth requirements, the unused
resources are then released and assigned to other network
services. Additionally, the advent of higher-order modula-
tion formats and variable coding-rate schemes [4-6] will
allow finer granularity of spectrum efficiency in transmission
systems. Consequently, the state of the network' becomes
extremely complicated and physical-layer impairments
(PLIs) will be the dominant limitation for satisfactory light-
path quality of transmission (QoT) and optical reach.

To achieve long-haul transmission between nodes in
flexible-grid optical networks, one or more optoelectronic
regenerators may have to be used to restore optical signals.
However, each regenerator adds a cost comparable to a pair
of endpoint transceivers [7], requiring the system operators
to predeploy them as efficiently as possible. By deploying
regenerators at a subset of the network nodes, referred to
as regenerator sites (RSs), we can achieve better sharing of
spare regenerators for randomly variable demands and im-
prove operational efficiency by requiring fewer truck rolls
[8], which require dispatching technicians in a truck to in-
stall or maintain the network equipment.

The problem of allocating a set of RSs is described as
the regenerator location problem (RLP), which has been
proven to be non-deterministic polynomial-time hard
(NP-hard) [9,10] when routes are not specified for each
source—destination pair. The authors of [9] also propose

'In this paper, the state of flexible-grid optical networks refers to the occu-
pancy of all the resources in the network and determines the network uti-
lization and PLIs.
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and compare three heuristic approaches for the RLP.
Reference [11] proves the hardness of four different var-
iants of the RLP and gives polynomial time and approxima-
tion algorithms.

Most of the previous works on the RLP have focused on
minimizing the overall cost of RSs. In Refs. [7,8], the cost of
individual traffic demand and the number of RSs are opti-
mized in single-line-rate networks. Various heuristic ap-
proaches have also been proposed in Refs. [7,8] to reduce
the total cost by allowing low-probability demands to have
slightly costlier lightpaths. In Ref. [12], the RLP in wave-
band-switched networks is investigated, where the optimi-
zation objective is the combined cost of optical switch ports
and regenerators.

The RLP studies mentioned above assume single-line-
rate WDM networks. Multiple available modulation formats
have also been considered in flexible-grid networks. The re-
generator cost and spectrum usage are jointly optimized in a
survivable network with different transponder profiles in
Ref. [13], where the authors minimize the number of RSs
subject to the constraint that each source-destination pair
has two disjoint lightpaths. In Refs. [14,15], efficient heuris-
tics and approximation algorithms are proposed to find RSs
in mixed-line-rate networks with different reachabilities.
The authors of [14,15] also show that certain network nodes
are more likely to be selected as RSs through extensive sim-
ulations with various traffic profiles.

Most of the above works estimate PLIs based on trans-
mission reach (TR) in fully loaded fiber links. Other models
can also be used to predict QoTs and select RSs. In Ref. [16],
the RLP in 10 Gbits/s non-return-to-zero on—off keying sys-
tems is solved based on an analytical expression of @-factor
combining various linear and nonlinear signal-degrading
effects. Reference [17] allocates RSs jointly with routing,
spectrum, and modulations using the Gaussian noise (GN)
model [18-20] in dispersion-uncompensated flexible-grid
networks. In this work, we also utilize the GN model to
obtain accurate QoT estimations from the real-time and
global resource allocation in the network.

All previous research into RLP assumes static traffic
models where both the set of traffic demands and their data
rates are fixed. Although the set of traffic demands remains
relatively stable in the current backbone optical networks
[21-23], the data rates of traffic demands will tend to be
more dynamic and varying according to real-time require-
ments in the future [2,21]. Provided the flexible-grid-
enabling BV-WXC and BV-T technologies [2] are utilized,
customized transmission can be created in the network.
Lightpaths can expand and contract their bandwidth
according to the real-time traffic volume and user request.
The corresponding optical channel bandwidths and the
generated PLIs in the network will be random variables
as well. Our work is different from previous research in
that we consider a time-varying traffic scenario, where
the stochastic PLIs are taken into account in the RLP.

In Ref. [24], we used the GN model and a modified stat-
istical network assessment process (SNAP) framework
[25-28] to perform Monte Carlo simulations and character-
ize the PLI empirically. Then a heuristic algorithm is
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proposed to allocate the RSs. The proposed method is com-
pared with two previous algorithms [7,29] that are based
on the TR model and static traffic prediction. This paper
extends the work by (i) improving the heuristic in Ref. [24]
with an optimization framework and providing a more
detailed explanation of the algorithm, and (ii) presenting
more results and analysis in the numerical simulations.
The impact of data-rate-variable traffic on RS allocation
is also studied.

The remainder of this paper is organized as follows: in
Section II, the RLP in nonlinear flexible-grid networks
with variable traffic is described. Our proposed algorithm
is presented in Section III. Section IV presents and dis-
cusses numerical results. Section V concludes the paper.

II. PROBLEM STATEMENT

In this paper, we consider an optical network repre-
sented by a undirected graph with sets of nodes V and links
E, where each link / € E is a bidirectional dispersion-
uncompensated fiber link between nodes i and j for
i,j € V. The spectrum on each fiber is sliced into subcar-
riers with a bandwidth of by, each (in GHz). All traffic
demands are assumed to use a uniform power spectral den-
sity (PSD) of G (in W - THz™!) and the same modulation for-
mat M with a spectral efficiency of ¢ and a signal-to-noise
ratio (SNR) threshold of SNRy, that guarantees an accept-
able QoT. Note that it is also possible to assign different
modulation formats for the lightpaths. This allows us to
improve the spectrum utilization and reduce the number
of RSs. On the other hand, the algorithms for allocating
routing, spectrum, modulation formats, and RSs would
be much more complicated. Therefore, to emphasize the
impact of time-varying traffic in the RLP, we will not con-
sider multiple modulation formats in this work. We require
a guardband of bandwidth b, between any two adjacent
channels. This requirement is ensured by assigning a
guardband to the right side of each channel.

The set of traffic demands is denoted with T', where each
element ¢ € T is characterized by its pair of source s and des-
tination ¢ for s # d and s,d € V, and a date rate request R, (in
Gbps) including a forward error correction (FEC) overhead.
We assume that the source-destination pairs in 7" are static
and known, whereas the data rate requests are time-varying
variables. A probability density function (PDF) pg, () is used
to represent its distribution. By employing Nyquist spectral
shaping [30], the demand ¢ with data rate r, shows a band-
width of Ab, = bgy, - [,/ (beus - €)]. The push-pull technique
[31] and the dynamic lightpath adaptation algorithm [32,33]
are used to adjust the bandwidth and shift the carrier
frequencies of the optical channels without disruption. The
spectrum ordering of demands is also assumed random,
because the traffic loading process is usually unknown to
the RLP, which is solved in the early stages of network plan-
ning, and the spectrum assignment will probably change
after restorations from network failures. In response to the
time-varying data rates and spectrum ordering, the trans-
ceivers and switches in the network are reconfigured periodi-
cally after fixed time intervals.
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TABLE 1
PARAMETERS IN THE PROBLEM STATEMENT
Parameter
Type Symbol Meaning
Input \%4 The set of nodes
E The set of links
M The name of the modulation format
used in the network
G The PSD (in W - THz™!) used for
all the traffic demands
bswy,  The subcarrier bandwidth (in GHz)
in the network
c The spectral efficiency of M
SNRy, The SNR threshold of M to achieve
an acceptable QoT
T The set of traffic demands
R; A random variable representing the
data rate (in Gbps) of demand ¢t € T'
pPr,(r;) The PDF of the data rate for demand ¢t € T
Ab;  The optical channel bandwidth
(in GHz) of demand ¢t € T'
F.« The maximum number of RSs in
the network
Output S(Fax) The set of output RSs whose total

number is constrained by F .,

As functions of data rates and spectrum ordering, the
SNRs of traffic demands also vary with time. A blocking
occurs when the temporary SNR of a demand is lower than
SNRy,. To achieve efficient network operation, we assume
that the temporarily blocked demands are still present in
the network instead of being rejected and reconnected fre-
quently. The noise blocking probability (BP) in this study is
thus defined as the overall BP averaged over time. In this
work, we assume that spectrum resources are sufficient to
serve all the traffic demands in 7. Therefore, blocking is
only caused by a low QoT. This assumption allows us to
mainly focus on the effect of time-varying traffic and
RLP algorithms.

Based on the above-mentioned description, the parame-
ters of our RLP are stated as follows and summarized in
Table I:

1) Input: Network topology (V,E), subcarrier bandwidth
bgup, available modulation format M with spectral effi-
ciency ¢, uniform PSD @G, maximum number of RSs
F .z, and the set of data-rate-variable demands 7" with
known pg, (r,) for t € T.

2) Output: A set of RSs, denoted with S(F,,y), that min-
imizes the BP.

III. REGENERATOR SITE ALLOCATION ALGORITHM

The modified SNAP framework that simulates the PLI
noise distributions for each demand-link pair is discussed
in Section III.A. Then we present the RS allocation algo-
rithm in Section II1.B. The parameters used in this section
are listed in Table II.

TABLE II
PARAMETERS IN THE PROPOSED ALGORITHM

Symbol Meaning

P, The ordered set of links on the route of ¢ € T

Q; The ordered set of intermediate nodes on the
route of t € T

L(T) The ordered list of randomly shuffled
demands in T'

Nuc The number of Monte Carlo repetitions

Ny, The random noise of the demand ¢t € T’
on the link / € P;

P, (n) The PDF of N,;

fi A binary indicator that equals 1 if node i € V
is an RS and 0 otherwise

f f={f1,....flv)} is a vector of f; fori e V

H,(f) The BP of the demand ¢t € T

Seg(t,f) The set of transparent segments on the route
of the demand ¢ € T that is divided by the
RS allocation f

Seg(?) The set of all possible transparent segments

on the route of the demand ¢t € T
N§ A random variable denoting the accumulated
noise of the demand ¢ € T at the end of
the transparent segment s € Seg(f)
The PDF of N
H; The BP of the demand ¢ € T on the
transparent segment s € Seg(t)

src(x) The source of x, where x can be a demand,
link, or a transparent segment

dst(x) The destination of x, where x can be a demand,
link, or a transparent segment

v, V, = {src(t),dstt)u@, fort T

wy The weight associated with the link s € Seg(¢)

D, The auxiliary weighted complete graph

D, = (V,, seg(t)) with weight w, for
the link s € Seg(t)
S; The set of promising RS allocations for ¢t € T'

St The set of promising RS allocations with
exactly k£ transparent segments for t € T'

K The maximum number of different solutions
that will be collected in S;;

7 A binary variable that equals 1 if the
transparent segment s € Seg(t) has its
source and destinations as RSs, the source,
or the destination of ¢ € T' and 0 otherwise

uk The value of u, in the x-th element of
S for k€ {1,..., S}

U, U; = {1, ...,1S5|}, the set of indices for
elements in S,

fix The «-th element in S, for « € U,

YVix The binary variable that equals 1 if the

pre-calculated solution f* € S, is chosen
by the overall RS allocation, and
0 otherwise, k € U

z; The binary variable that equals 1 if the
node i € V is chosen by the overall
RS allocation, and 0 otherwise

6 A large enough real number

A. Modified Statistical Network Assessment Process

The incoherent GN model [18-20] is an analytical model
to account for the nonlinear interference (NLI) caused by
the Kerr effect. It takes the allocation of fiber links, spectral
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orderings, and bandwidths of all the traffic demands as in-
put and calculates the NLI noise for each demand-link pair
t,0),vt € T,l € P,, where P,C |[E denotes the ordered set of
links on the route of . The GN model is used by the SNAP
framework to evaluate the NLI. Based on the GN model,
the PLI noise is the sum of its NLI noise and the amplified
spontaneous emission (ASE) noise introduced by optical
amplifiers on its route. Therefore, under the condition that
the data rates and spectrum orderings of all the demands
in the network are random variables, the PLI noises for all
the demand-link pairs are random variables as well.
Despite the availability of more advanced strategies for
optical power control [34-36], a uniform and fixed PSD
is used for all the traffic demand in this work for the sake
of simplicity. Note that in this work, we only take into
account the most dominant and fundamental PLIs [19],
whereas other signal quality degradation mechanisms
such as optical crosstalk, filtering effect, and polariza-
tion-dependent loss are not included.

The probabilistic distribution of the PLI noise suffered
by each demand-link pair is critical in quantifying the
BP and achieving a robust regenerator placement. In this
study, a modified version of the SNAP [25] is used to draw
samples from the state space of the network and sta-
tistically characterize the PLI noise distributions. The
flowchart of the modified SNAP is shown in Fig. 1.

i-th Monte Carlo
run

]

Random shuffle
of demands £(T')

|

Generate random
data rates pR,(7t)

!

Load demands

v

Calculate PLIs Ny ;

Traffic model:
T and PRy(Tt)

Routing and
spectrum
policies

Network topology:

(V.E) T
Transmission =i+l
and physical-
layer
parameters @ No
Empirical noise

PDFs PN, ()

Fig. 1. Modified SNAP, which statistically characterizes PLI
noise distributions.
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The modified SNAP used in this study takes as input the
following information:

1) The traffic model including the set of traffic demands T'
and the probabilistic distribution pg, (r,) for ¢t € T.

2) The routing and spectrum assignment policies.
3) The network topology (V,E).

4) Transmission and physical-layer parameters for PLI
evaluation, i.e., the modulation format of optical sig-
nals, the PSD assignment policy, the fiber and optical
amplifier parameters, etc.

The modified SNAP produces as output the PLI distri-
butions for each demand-link pair by performing a
Monte Carlo analysis. During each Monte Carlo run, a
progressive load of the network is carried out to simulate
one possible resource usage state of the network:

1) Shuffle the demands randomly and generate an ordered
list of demands £(7T).

2) Draw a random sample of the data rate from the PDF
Dg,(ry) for each t € T

3) Load demands with the order in £(7T') and data rates are
generated in step 2.

4) Calculate the PLI for each demand-link pair based on
the GN model, the demand bandwidths, and the spec-
trum allocations from step 3.

Based on Ny Monte Carlo repetitions, we can obtain an
empirical PDF, py, (), that describes the random noise N;;
for the demand ¢ on the link [, for all t € T and [ € P,.

B. RS Allocation Heuristic

By using the empirical PLI noise distributions generated
from the modified SNAP simulations, the RLP heuristic
minimizes the BP with a fixed number F, . of RSs. This
is decomposed into two subproblems: 1) for each traffic de-
mand, find a promising set of RS allocations, each of which is
a subset of the global RS allocation offering a low BP for the
demand; and 2) for each traffic demand, select one RS allo-
cation scheme from its promising set of RS allocations cal-
culated in step 1 such that the global RS allocation achieves
a low BP and the number of RSs is no larger than F .

We use H,(f) to denote the BP of demand ¢ € T as a func-
tion of RS allocation f in the network, where f is a vector
of f; for all i € V, and f; is a binary indicator that equals 1
if node i is an RS and 0 otherwise. Suppose f divides the
route of ¢ into a set of transparent segments Seg(,f).
The evaluation of H,(f) for a given f is as follows:

1) Obtain py:(n), the PDF of the random accumulated
PLI noise N at the end of the transparent segment
s € Seg(t,f), based on the simulation data in the modi-
fied SNAP. Here we have

Ni=) Ny 1

les
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and
pn:(n) = SPNM (n), (2)

where the right-hand side of Eq. (2) is the convolution of
all the py,,(n) along s.

2) Calculate the BP Hf on the transparent segment s with
+oo
H; = / p:(n)dn. 3)
G/SNRy,

3) Calculate H,(f) under the assumption that the BPs on
disjoint transparent segments are independent by using

Ht(f) =1- HSESeg(t,f)(l - H?)y (4)

or, equivalently,

-In(1-H,(®)=- Y  In(1-H;). (5)

seseg(t,f)

To obtain the promising set of RS allocations that con-
tains the optimal solution for the demand ¢, we first calcu-
late Hf for all s € Seg(t), where Seg(t) is the set of all
possible transparent segments on the route of ¢£. Then we
construct a weighted directed graph D, = (V,, Seg(?)).
The set of nodes in D, is V, = {src(t),dst(t)}uQ,, which
contains all the network nodes along the route of ¢, includ-
ing its source and destination. The set of links in D, is
Seg(t), which contains all the transparent segments con-
necting any pair of nodes along the route of £. The weight
w, associated with the link s € Seg(f) in D, is

_ _ln(l_H?)’
w, = {+ ol

if HS <1,
if Hy = 1. ©
In D,, the set of nodes on a path between src(f) and dst(t)
is equivalent to an RS allocation on the route of #, and the
total path weight corresponds to the BP of the RS allocation
according to Eq. (5). This transformation from an RS allo-
cation and its corresponding BP to a weighted route in D,
facilitates the search for promising RS allocations. We
identify the promising set of RS allocations with £ -1
RSs by an exhaustive search of the K-shortest weighted
paths in D, with % transparent segments. This search is
summarized in Algorithm 1 where steps 3-12 are repeated
for different values of k. Specifically, we search for the
K-shortest paths in D, with path lengths of k. For each
k, Eq. (7) is solved iteratively to find K different solutions,
which corresponds to steps 4-10 in Algorithm 1:

minilsnize Z wllg, (7a)
seseg(t)
subject to Z Ug — Z Ug
seseq(t) seseg(t)
sre(s)=i dst(s)=i
1, ifi=src(),
={-1, ifi=dst@®), VieV, (7b)
0, otherwise,
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Z u, =k, (7c)
seseg(?)
dug<k-1, Ve {l,..,[Sul- (7d)

seSeqg(t)
uf=1

Here u, for s € Seg(t) is a binary variable that equals 1 if
the transparent segment s has its two endpoints as RSs,
source, or destination of #, and 0 otherwise. S,;; is the
set of solutions obtained at previous iterations of solving
Eq. (7) with k& transparent segments. uf is the value of
us in the x-th element of S, ;, for x € {1, ..., |S,; 4 |}. The objec-
tive (7a) calculates the BP of the demand ¢. Equation (7b)
is the flow conservation constraint. Specifically, Eq. (7b)
states the following three possible cases for a node: 1) it
has only one outgoing link if it is the source of a path;
2) it has only one incoming link if it is the destination of
a path; and 3) it has one outgoing as well as one incoming
link if it is an intermediate node of a path. Equation (7c) is
a constraint on the number of transparent segments. In Eq.
(7d), inequality searches for new solutions by excluding
those already found. In other words, it requires that the
current solution does not have all 1 s at the same positions
as in previous solutions. Hence, a different solution is
obtained by adding Eq. (7d).

Algorithm 1: Search of potential RS allocations for ¢, € T
Input:
e The weighted complete graph D, = (V,seg(t))
with link weights specified in Eq. (6).
e A constant K giving the number of RS solutions
with the same number of transparent segments
that will be searched

1: Let S, denote the set of promising RS allocations

2: Initialize S, = @

3: forkin {1,...,|Q;} do

4: Let S, denote the set of RS allocations with ex-

actly £ RSs

5: Initialize S;;, = &

6: forjin {1,...,K} do

7 Solve (7) and convert its solution and objective
value to an RS allocation f and the BP H,(f),
respectively

8: Update (7) by adding the new solution to (7d)

9: St < SppUit}

10: end for

11: S« S;USy;,

12: end for

Output: The set of all potential paths S; and the corre-
sponding noise blocking probability H,(f), Vf € S;

As described by step 7 of Algorithm 1, after Eq. (7) has
been solved, its solution u, and the objective value
D seseq(tyWslts are converted to an RS allocation f and the
BP H,(f), respectively. Based on the sets of promising RS
allocations S; for the demand ¢ €T, we can select the
overall RS allocation that satisfies the constraint on the
number of RSs and achieves the minimum BP by solving
the optimization problem:
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minimize Z Z Ve H({E), (8a)
Yoo el kell,
subjectto "y, =1, VteT, (8b)
KEU,
Z Zfz’xyt,x <bz, VieV, (8c)
teT kel,
Zzi < Fmax- (Sd)
eV
Here U, = {1,...,|S,|} is the set of indices for elements in S;;

the binary variable y,, indicates if the pre-calculated sol-
ution f'* € S, is selected into the final RS allocation; the
binary variable z; indicates if the node i € V is chosen as
an RS; £7* is the ith element of f**; § is a large enough
number; and F,, is the maximum number of RSs in
the network. To ensure a valid binary variable z;, the value
of 6 should be greater than the maximum of the left-hand
side in Eq. (8c), whose upper bound is derived as follows

YT <D D 1<) QUK < |T||VIK.

teT ke, teT kelU, teT

The last two inequalities hold because |U,| < |@;/K and
|Q;] < |V|. Therefore, we can set 6 to |T||V|K in Eq. (8c).
The objective (8a) calculates the overall BP in the network;
Eq. (8b) implies that exactly one RS allocation from S; is
chosen for each demand ¢ € T'; Eq. (8c) is used to calculate
whether a node is selected as an RS for each node; and
Eq. (8d) is the constraint on the number of RSs.

The complexity of the proposed method is mainly attrib-
uted to the modified SNAP, whose required computational
resources grow proportionally with the number of simula-
tions Nyc. The RS allocation heuristic, however, has a
comparatively low computational complexity due to the rel-
atively simple formulations in Egs. (7) and (8), as measured
by the number of variables involved.

IV. NumERIcAL RESULTS

In this section, we present simulation results for the pro-
posed RS allocation heuristic. We first verify the accuracy
of our BP estimation by the objective of Eq. (8) against sim-
ulation results. Next, we study the impact of data-rate-
variable traffic demands on BP, then compare it with
two previous algorithms [7,29] based on the TR model
and static traffic prediction. The first benchmark is the
greedy constrained-routing RLP (greedy CRLP) [7] that
minimizes the number of RSs subject to certain routing
constraint (in most cases, it is the shortest path constraint),
a static traffic matrix, and a provided TR. The second
benchmark is the routing and reach heuristic (RR) [29] that
ranks the likelihood of being an RS for each node based on
the network connectivity and TR model. This likelihood
rank of nodes can also be obtained with the proposed algo-
rithm by varying the value of F,,,, and recording the incre-
ment of S(F,.x).- The BP and node ranking performance of
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the proposed algorithm are studied against the greedy
CRLP and RR, respectively, in the data-rate-variable sce-
nario with the same TRs.

The continental U.S. topology (CONUS) with 75 nodes
and 99 bidirectional links, shown in Fig. 2, is studied in
the numerical simulations. We assume that there is one
traffic demand between each node pair. The shortest-
distance routes and the first-fit spectrum allocation scheme
are used for all the traffic demands. BV-Ts with a single
modulation format of polarization-multiplexing quadra-
ture phase shift keying with Nyquist spectral shaping
are applied to all the traffic demands to obtain a spectral
efficiency of 4 bits/s/Hz for a raw channel data rate includ-
ing the FEC overhead. A uniform and fixed PSD of
G =15 mW/THz is applied to all the traffic demands.
The subcarrier bandwidth on all the fiber links is
beup, = 12.5 GHz. The demand data rate R; is assumed to
follow a normal distribution, i.e., R, ~ N(u, 6?), for all the
demands ¢ € T, with ¢ = 200 Gbps and ¢ = 20 Gbps. We
consider a standard single-mode fiber with the following
characteristics: loss coefficient « = 0.22 dB/km, dispersion
coefficient D = 16.7 ps/nm/km, nonlinear coefficient y =
1.32 x 10~ (Wm)~L. The noise figure of the erbium-doped
fiber amplifier is 5.5 dB. The span length is uniformly
100 km across the network.

In the modified SNAP, Nyc = 7 x 10* sets of random
traffic are used to simulate the PLI noise distributions
PN, For performance verification, 3 x 10* sets of random
traffic with shuffled spectrum orderings are used to simu-
late the BP. This gives a BP resolution of 3.3 x 10~°, which
corresponds to on average one noise blocking per demand
in the whole BP simulation. Also observe that the accuracy
of the PLI distribution output by the modified SNAP is
dependable up to a certain confidence level. Therefore,
the accuracy of the BP simulation as well as the PLI noise
distributions can be improved by increasing the number of
simulated traffic matrices in both parts.

Note that the benchmarks require the TR value as input,
which is determined by the SNR threshold of the chosen
transmission scheme and the fiber and amplifier parame-
ters. To make a thorough comparison with the benchmarks
in all possible cases, we vary the TR value from 1300 to
5000 km by scaling the SNR threshold proportionally,
which corresponds to different coding schemes and error-
correction capacities. Specifically, when scaling the SNR

.
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Fig. 2. CONUS network topology. The circles represent an exam-
ple RS allocation.
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threshold, its multiplication with TR is a constant given
by SNRy, x TR = const. A few examples of the mapping
between SNR thresholds and TRs in our simulations are
shown in Table III. Moreover, the simulation results over
different TR values can also help us to understand in what
transmission scenarios the proposed algorithm is effective.
Observe that in the method proposed by us, the TR values,
or, equivalently, the SNR thresholds, are used in Eq. (3)
to represent how much PLI noise a traffic demand can
sustain without being blocking, whereas the GN model
is still used to calculate the actual PLIs.

BP estimation accuracy: The BPs predicted by Eq. (8) are
compared with the simulation results in Fig. 3 for different
TR values. The BPs are shown as functions of the number
of RSs. The simulated and predicted BPs are close to each
other, which means that the modified SNAP can empiri-
cally depict the PLI distributions well. The simulated
curves have slightly higher BPs than the predicted ones.
This is because the results of the proposed algorithm are
based on the empirical PLI distributions obtained in the
modified SNAP. Due to the limited number of simulations,
there is still a slight discrepancy between the empirical
and true PLI distributions. Therefore, the predictions
based on the empirical PLI distributions are not the same
as the simulated ones. The difference between the two
curves will converge to zero as we increase Ny, the
number of Monte Carlo simulations in SNAP.

Impact of data-rate-variable traffic: Figure 4 illustrates
the impact of a variable data rate by simulating the BPs
of demands with zero standard deviation. The RS alloca-
tions are based on the traffic with ¢ = 20 Gbps. A larger

TABLE III
MaprrPiNG BETWEEN SNR THRESHOLDS AND TRs
SNR Threshold TR (km)
14.60 1300
9.49 2000
7.03 2700
5.58 3400

— % — Prediction, TR = 1300
— % — Prediction, TR = 2000

Prediction, TR = 2700
— % — Prediction, TR = 3400

—6— Simulation, TR = 1300
—6— Simulation, TR = 2000

Simulation, TR = 2700
—6— Simulation, TR = 3400

Number of RSs

Fig. 3. BPs of the prediction and simulation with different TRs.
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variance causes stronger PLIs for some of the demands
and results in higher overall BPs. The zero-variance traffic
has less randomness in the PLI noise and, thus, has lower
BPs. Therefore, it is necessary to consider the variable
traffic in the RLP in nonlinear flexible-grid networks.

Comparison with the greedy CRLP: In Fig. 5, the re-
quired numbers of RSs to achieve the same level of BPs
at different TRs are compared for both the proposed algo-
rithm and the greedy CRLP. At each TR, the greedy CRLP
computes one RS set and its corresponding BP, whereas
the proposed algorithm can generate multiple RS sets,
each for a different F',,,. To make a comparison between
the two methods, we sweep F ., and choose the smallest
one that achieves a BP no larger than that of the greedy
CRLP. As shown in Fig. 5, the proposed algorithm requires
fewer RSs than the greedy CRLP for most of the TRs. The
average reduction in the number of RSs is around 10%.

Overprovision of the TR model: To study the impact of
the PLI models in the RLP, we analyze the PLI PSD of
the demand with the highest impairments on each link cal-
culated by the GN model, which is normalized to the worst

— % — o=0, TR = 1300
— % — o =0, TR = 2000

o =0, TR = 2700
— % — o =0, TR = 3400

— o6 0=20, TR = 1300
— 6 0 =20, TR = 2000

o =20, TR = 2700
— 6 0 =20, TR = 3400

Number of RSs

Fig. 4. Simulated BPs for traffic demands with different standard
deviations of data rates.

35 T T T T T T T

— — — Greedy-CRLP
Proposed

Number of RSs

N

1500 2000 2500 3000 3500 4000 4500
TR (km)

Fig. 5. Number of RSs required by the proposed and greedy
CRLP algorithms to achieve similar BPs.
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case PLI noise estimated by the TR model. The means and
standard deviations of the normalized noise are plotted in
Fig. 6. We observe that the TR model tends to overestimate
the PLIs, which leads to an inefficient placement of RSs.
This is because the TR model assumes that all the links
are fully occupied, which is not the case in the network
scenario due to the inevitable spectrum segmentation
and geographical distribution of traffic.

Comparison with the RR: We compare the node ranking
of being an RS as calculated by the proposed method and the
RR method by visualizing their resulting BPs in Fig. 7. The
BPs of different TRs are plotted as functions of the number
of RSs for both methods. In the RR method, a node gets a
higher rank if it is chosen as an RS by more traffic demands.
As aresult, two highly ranked nodes in the RR can be used to
serve similar demands and are not necessary to be RSs at
the same time. If we select both of them as RSs, the BP will
not gain much but the RS resources are wasted. This is the
reason for the plateau areas in the RR curves in Fig. 7. In
contrast, by optimizing the RS in combination instead of
individually based on the empirical PLI distributions,

100% T T T T T T T T T

Standard deviation
Mean b

95%

90% |-

85% |-

80% |

5%

70% -

Normalized highest noise per link

65 L L L L L L L 1 L
% 10 20 30 40 50 60 70 80 90

Link index after sorting

Fig. 6. Highest PLI noise per link from the GN model normalized
to the worst case from the TR model. The link indices are sorted in
such a way that the means are in a descending order.

—x—— Proposed, TR = 1300
—»—— Proposed, TR = 2000

Proposed, TR = 2700
—x—— Proposed, TR = 3400

— © — RR, TR = 1300
— © — RR, TR = 2000

RR, TR = 2700
— © — RR, TR = 3400

Number of RSs

Fig. 7. BPs of the proposed and RR methods for different TRs and
numbers of RSs.
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the proposed algorithm achieves significantly lower BPs
compared with the RR, with an average BP gain of two
orders of magnitude.

V. CONCLUSION

The paper tackles the RLP in nonlinear flexible-grid net-
works with variable data rate requests. The GN model and
the modified SNAP framework are applied to statistically
describe the PLI noise distribution of each demand-link
pair in the network, based on which the set of RSs are de-
termined. The proposed method also predicts the BP per-
formance of its solution with an accuracy of up to 3.3 x 1075,
The efficiency of the allocated RS set is improved by 10%
compared with that in the greedy CRLP algorithm, by
estimating the PLI more accurately and taking into
account the realistic traffic conditions in the network.

ACKNOWLEDGMENT

This research is supported in part by the NSF Grant CCF-
1422871, the Swedish Research Council Grant 2012-5280,
and the Ericsson Research Foundation.

REFERENCES

[1] O. Gerstel, M. Jinno, A. Lord, and S. Yoo, “Elastic optical net-
working: a new dawn for the optical layer?” IEEE Commun.
Mag., vol. 50, no. 2, pp. s12-s20, 2012.

[2] M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and
S. Matsuoka, “Spectrum-efficient and scalable elastic optical
path network: architecture, benefits, and enabling technolo-
gies,” IEEE Commun. Mag., vol. 47, no. 11, pp. 66-73, 2009.

[3] M. Klinkowski, M. Ruiz, L. Velasco, D. Careglio, V. Lopez, and
J. Comellas, “Elastic spectrum allocation for time-varying
traffic in flexgrid optical networks,” IEEE J. Sel. Areas
Commun., vol. 31, no. 1, pp. 26-38, 2013.

[4] L. Beygi, E. Agrell, J. M. Kahn, and M. Karlsson, “Rate-
adaptive coded modulation for fiber-optic communications,”
J. Lightwave Technol., vol. 32, no. 2, pp. 333-343, 2014.

[5] N.Sambo, G. Meloni, F. Cugini, A. D’Errico, L. Pot, P. Iovanna,
and P. Castoldi, “Routing code and spectrum assignment
(RCSA) in elastic optical networks,” J. Lightwave Technol.,
vol. 33, no. 24, pp. 5114-5121, 2015.

[6] J.Zhao, L. Yan, H. Wymeersch, and E. Agrell, “Code rate op-
timization in elastic optical networks,” in European Conf
Optical Communication (ECOC), Valencia, Spain, Sept. 2015,
paper We.3.5.1.

[7] B. G. Bathula, R. K. Sinha, A. L. Chiu, M. D. Feuer, G. Li,
S. L. Woodward, W. Zhang, R. Doverspike, P. Magill, and
K. Bergman, “Constraint routing and regenerator site concen-
tration in ROADM networks,” J. Opt. Commun. Netw., vol. 5,
no. 11, pp. 1202-1214, 2013.

[8] B. G. Bathula, A. L. Chiu, R. K. Sinha, and S. L. Woodward,
“Routing and regenerator planning in a carrier’s core ROADM
network,” in Optical Fiber Communication Conf. (OFC),
Los Angeles, CA, Mar. 2017, paper Th4F.4.

[9] S. Chen, L. Ljubi¢, and S. Raghavan, “The regenerator loca-
tion problem,” Networks, vol. 55, no. 3, pp. 205-220, 2010.

[10] B. G. Bathula, R. K. Sinha, A. L. Chiu, M. D. Feuer, G. Li,
S. L. Woodward, W. Zhang, R. Doverspike, P. Magill, and



Yan et al.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

K. Bergman, “Cost optimization using regenerator site con-
centration and routing in ROADM networks,” in IEEE Int.
Conf. Design of Reliable Communication Networks (DRCN),
Budapest, Hungary, Mar. 2013, pp. 139-147.

M. Flammini, A. Marchetti-Spaccamela, G. Monaco, L.
Moscardelli, and S. Zaks, “On the complexity of the regener-
ator placement problem in optical networks,” IEEE/ACM
Trans. Netw., vol. 19, no. 2, pp. 498-511, 2011.

S. Varma and J. P. Jue, “Regenerator placement and wave-
band routing in optical networks with impairment con-
straints,” in Int. Conf. Communications (ICC), Kyoto, Japan,
2011, paper ONSP-1.

A. Eira, J. Santos, J. Pedro, and J. Pires, “Design of survivable
flexible-grid DWDM networks with joint minimization of tran-
sponder cost and spectrum usage,” in European Conf. Optical
Communication (ECOC), Amsterdam, the Netherlands,
Sept. 2012, paper P5.16.

W. Xie, J. P. Jue, X. Wang, Q. Zhang, Q. She, P. Palacharla, and
M. Sekiya, “Regenerator site selection for mixed line rate
optical networks,” J. Opt. Commun. Netw., vol. 6, no. 3,
pp. 291-302, 2014.

W. Xie, J. P. Jue, X. Wang, Q. Zhang, Q. She, P. Palacharla, and
M. Sekiya, “Cost-optimized design of flexible-grid optical
networks considering regenerator site selection,” in IEEE
Global Communications Conf. (GLOBECOM), Atlanta, GA,
Dec. 2013, pp. 2358-2363.

S. Pachnicke, T. Paschenda, and P. Krummrich, “Assessment
of a constraint-based routing algorithm for translucent
10Gbits/s DWDM networks considering fiber nonlinearities,”
J. Opt. Netw., vol. 7, no. 4, pp. 365-377, 2008.

N. Dharmaweera, L. Yan, J. Zhao, M. Karlsson, and E. Agrell,
“Regenerator site selection in impairment-aware elastic opti-
cal networks,” in Optical Fiber Communication Conf. (OFC),
Anaheim, CA, Mar. 2016, paper Tu3F.1.

P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, and F.
Forghieri, “The GN-model of fiber non-linear propagation and
its applications,” JJ. Lightwave Technol., vol. 32, no. 4, pp. 694—
721, 2014.

P. Johannisson and E. Agrell, “Modeling of nonlinear signal
distortion in fiber-optic networks,” J. Lightwave Technol.,
vol. 32, no. 23, pp. 4544-4552, 2014.

L. Yan, E. Agrell, H. Wymeersch, and M. Brandt-Pearce,
“Resource allocation for flexible-grid optical networks with
nonlinear channel model,” J. Opt. Commun. Netw., vol. 7,
no. 11, pp. B101-B108, 2015.

E. Agrell, M. Karlsson, A. Chraplyvy, D. J. Richardson, P. M.
Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory,
B. J. Eggleton, and M. Secondini, “Roadmap of optical commu-
nications,” J. Opt., vol. 18, no. 6, 063002, 2016.

A. Leiva, C. M. Machuca, A. Beghelli, and R. Olivares,
“Migration cost analysis for upgrading WDM networks,”
IEEE Commun. Mag., vol. 51, no. 11, pp. 87-93, 2013.

A. Zapata-Beghelli and P. Bayvel, “Dynamic versus static
wavelength-routed optical networks,” JJ. Lightwave Technol.,
vol. 26, no. 20, pp. 3403-3415, 2008.

L. Yan, Y. Xu, M. Brandt-Pearce, N. Dharmaweera, and E.
Agrell, “Regenerator allocation in nonlinear elastic optical
networks with random data rates” in Optical Fiber

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

VOL. 10, NO. 1/NOVEMBER 2018/J. OPT. COMMUN. NETW. 831

Communication Conf (OFC), San Diego, CA, Mar. 2018,
paper Th2A.47.

M. Cantono, R. Gaudino, and V. Curri, “Potentialities and
criticalities of flexible-rate transponders in DWDM networks:

a statistical approach,” J. Opt. Commun. Netw., vol. 8, no. 7,
pp- A76-A85, 2016.

V. Curri, M. Cantono, and R. Gaudino, “Elastic all-optical net-
works: a new paradigm enabled by the physical layer. How to
optimize network performances?” J. Lightwave Technol.,
vol. 35, no. 6, pp. 1211-1221, 2017.

M. Cantono, R. Gaudino, P. Poggiolini, and V. Curri,
“Comparing networking benefits of digital back-propagation
vs. lightpath regeneration,” in European Conf. Optical
Communication (ECOC), Disseldorf, Germany, Sept. 2016,
paper Tu.3.D.4.

M. Cantono and V. Curri, “Flex- vs. fix-grid merit in pro-
gressive loading of networks already carrying legacy traffic,”
in Int. Conf. Transparent Optical Networks (ICTON), Girona,
Spain, July 2017, paper Th.B4.5.

dJ. Pedro, “Predeployment of regenerators for fast service pro-
visioning in DWDM transport networks,” /. Opt. Commun.
Netw., vol. 7, no. 2, pp. A190-A199, 2015.

R. Schmogrow, M. Winter, M. Meyer, D. Hillerkuss, S. Wolf,
B. Baeuerle, A. Ludwig, B. Nebendahl, S. Ben-Ezra, J.
Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W.
Freude, and J. Leuthold, “Real-time Nyquist pulse generation
beyond 100 Gbit/s and its relation to OFDM,” Opt. Express,
vol. 20, no. 1, pp. 317-337, 2012.

F. Cugini, F. Paolucci, G. Meloni, G. Berrettini, M. Secondini,
F. Fresi, N. Sambo, L. Poti, and P. Castoldi, “Push-pull defrag-
mentation without traffic disruption in flexible grid optical
networks,” . Lightwave Technol., vol. 31, no. 1, pp. 125-
133, 2013.

A. Asensio, M. Klinkowski, M. Ruiz, V. Lépez, A. Castro, L.
Velasco, and J. Comellas, “Impact of aggregation level on the
performance of dynamic lightpath adaptation under time-
varying traffic,” in IEEE Int. Conf. Optical Network Design
and Modeling (ONDM), Brest, France, Apr. 2013, pp. 184-189.
L. Velasco, A. P. Vela, F. Morales, and M. Ruiz, “Designing,
operating, and reoptimizing elastic optical networks,”
J. Lightwave Technol., vol. 35, no. 3, pp. 513-526, 2017.

P. Poggiolini, G. Bosco, A. Carena, R. Cigliutti, V. Curri, F.
Forghieri, R. Pastorelli, and S. Piciaccia, “The LOGON strategy
for low-complexity control plane implementation in new-
generation flexible networks,” in Optical Fiber Communication
Conf (OFC), Anaheim, CA, Mar. 2013, paper OW1H.3.

R. Pastorelli, S. Piciaccia, G. Galimberti, E. Self, M. Brunella,
G. Calabretta, F. Forghieri, D. Siracusa, A. Zanardi, E.
Salvadori, G. Bosco, A. Carena, V. Curri, and P. Poggiolini,
“Optical control plane based on an analytical model of non-
linear transmission effects in a self-optimized network,” in
European Conf. Optical Communication (ECOC), London,
UK, Sept. 2013, paper We.3.E.4.

V. Curri, A. Carena, A. Arduino, G. Bosco, P. Poggiolini, A.
Nespola, and F. Forghieri, “Design strategies and merit of sys-
tem parameters for uniform uncompensated links supporting
Nyquist-WDM transmission,” J. Lightwave Technol., vol. 33,
no. 18, pp. 3921-3932, 2015.



