Isolation and characterization of Leptospira interrogans from two patients with leptospirosis in Western Province, Sri Lanka


Abstract

Leptospirosis is an endemic infectious disease causing considerable morbidity and mortality in Sri Lanka; however, reports on the isolation of Leptospira from infected patients in Sri Lanka have been largely unavailable since the 1970s. Two isolates were obtained and characterized from 100 blood cultures from leptospirosis-suspected patients. Phylogenetic analysis of partial flaB gene sequences identified the isolates as Leptospira interrogans. The patient serum samples from which Leptospira was isolated reacted with the Leptospira serogroups Sejroe and Canicola at a titre of 1:200. Exposure to domestic sewage and gutters filled with muddy water was suspected to be the source of infection in these two culture-positive patients. This study reports the successful isolation of pathogenic Leptospira from two patients in Western Province, Sri Lanka.

Leptospirosis is a zoonotic disease that is recognized as a significant public health threat in Sri Lanka due to its high morbidity and mortality [1–3]. Although several diagnostic methods, including the microscopic agglutination test (MAT), PCR and antibody detection assays, are available at reference centres, these methods have several limitations that may yield false negatives due to low detectable bacterial load or antibodies. Culture isolation, on the other hand, is a confirmatory test for leptospirosis that can overcome these limitations. In recent years, several studies have identified pathogenic Leptospira species (including L. interrogans, L. kirschneri, L. borgpetersenii, L. santarosai and L. weilli) from human patients using molecular methods in Sri Lanka [1, 4, 5]. Leptospira is a fastidious organism with specialized culture requirements and thus is not routinely cultured [6]. However, the isolation of infecting Leptospira strains is important from an epidemiological perspective and can also provide information on the mammalian maintenance hosts involved in transmission [7, 8]. The first isolation of Leptospira from a human in Sri Lanka was reported in 1962, and reports of successful isolation have not been published since 1973 in Sri Lanka [5, 9]. In the present study, we succeeded in isolating Leptospira strains from two human patients in Western Province, Sri Lanka.

This was a prospective hospital-based study carried out at a tertiary care hospital in the southern part of Colombo District, Western Province, Sri Lanka between June and December 2017. Patients who were clinically suspected of leptospirosis according to the World Health Organization (WHO) guidelines [10] and had been admitted to the medical wards were included. A 5 ml venous blood sample was collected on admission and transported at 4°C to the Department of Microbiology, University of Sri Jayewardenepura, Sri Lanka within an hour of collection. One hundred microlitres of whole blood was inoculated into semi-solid Ellinghausen–McCullough–Johnson–Harris (EMJH) medium, which was incubated at room temperature in the dark and examined for the presence of spirochetes by dark-field microscopy weekly for 4 months. Once motile live spirochetes were observed, an aliquot of culture was subjected to DNA extraction using the DNeasy Blood and Tissue kit (Qiagen, Hilden, Germany) followed by nested PCR targeting the flaB gene as described previously [11]. The positive amplicons were purified and sequenced using the Big Dye terminator v3.1 cycle sequencing kit (Applied Biosystems, Foster city, CA, USA). The flaB sequences were aligned together with 25 known reference flaB sequences in MEGA7 using ClustalW, and phylogenetic distance was calculated in
The flaB sequences were deposited in GenBank and accession numbers were obtained (SLUSJ_182, MH243436; SLUSJ_183, MH243437). Furthermore, a quantitative PCR

Table 1. Leptospira strains used for MAT

<table>
<thead>
<tr>
<th>No.</th>
<th>Serovar</th>
<th>Strain</th>
<th>Serogroup</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Patoc</td>
<td>Patoc I</td>
<td>Semaranga</td>
<td>L. biflexa</td>
</tr>
<tr>
<td>2</td>
<td>Javanica</td>
<td>Veldrat Batavia 46</td>
<td>Javanica</td>
<td>L. borgpetersenii</td>
</tr>
<tr>
<td>3</td>
<td>Tarassovi</td>
<td>Perepelitsin</td>
<td>Tarassovi</td>
<td>L. borgpetersenii</td>
</tr>
<tr>
<td>4</td>
<td>Weerasinghe</td>
<td>Weerasinghe</td>
<td>Automnalis</td>
<td>L. interrogans</td>
</tr>
<tr>
<td>5</td>
<td>Hardjo</td>
<td>Hardjoprajitno</td>
<td>Sejoe</td>
<td>L. interrogans</td>
</tr>
<tr>
<td>6</td>
<td>Canicola</td>
<td>Hond Utrecht IV</td>
<td>Canicola</td>
<td>L. interrogans</td>
</tr>
<tr>
<td>7</td>
<td>Icterohaemorrhagiae</td>
<td>RGA</td>
<td>Icterohaemorrhagiae</td>
<td>L. interrogans</td>
</tr>
<tr>
<td>8</td>
<td>Pomona</td>
<td>Pomona</td>
<td>Pomona</td>
<td>L. interrogans</td>
</tr>
<tr>
<td>9</td>
<td>Hebdomadis</td>
<td>Hebdomadis</td>
<td>Hebdomadis</td>
<td>L. interrogans</td>
</tr>
<tr>
<td>10</td>
<td>Rathnapura</td>
<td>Wimalasena</td>
<td>Grippotyphosa</td>
<td>L. interrogans</td>
</tr>
</tbody>
</table>

MEGA7 using the neighbour-joining method [12]. The flaB sequences were deposited in GenBank and accession numbers were obtained (SLUSJ_182, MH243436; SLUSJ_183, MH243437). Furthermore, a quantitative PCR

Fig. 1. Phylogenetic tree based on the Leptospira flaB gene sequence. The sequences were aligned in MEGA7 using ClustalW, and phylogenetic distances were calculated in MEGA7 using maximum likelihood. The numbers of nodes were bootstrap supported after 500 replicates.
A qPCR assay using the EvaGreen technology was applied to quantify the Leptospira load in the blood of culture-positive patients [13]. Serum samples from culture-positive patients were subjected to MAT to identify the infective serogroup. A panel of 10 Leptospira serogroup strains were used for MAT (Table 1).

Among 100 blood cultures from clinically suspected leptospirosis patients, 2 cultures turned out to be positive (SLUSJ_182 and SLUSJ_183). The phylogenetic distance of the flaB sequences of the isolates suggested that the Leptospira species were L. interrogans (Fig. 1). The demographic and epidemiological data for the two confirmed patients are summarized in Table 2. qPCR was only successful in patient SLUSJ_183, whose bacterial load was 134 353 Leptospira/ml. The serum samples from the two patients reacted with the serogroups Sejroe and Canicola at a maximum titre of 1 : 200.

Positive culture isolation provides strong confirmatory evidence for diagnosis. As observed in this study, a qPCR-negative patient was found to be positive by culture, probably due to low bacterial load in the sample, which emphasizes the usefulness of culture over other techniques. MAT requires acute and convalescent specimens for definitive diagnosis, which is a daunting task in resource-poor settings with no proper follow-up. Although culture isolation also has limitations and is affected by prior antibiotic usage, time of collection and the fastidious nature of the organisms, it has a definitive role, not only in diagnosis but also in the epidemiology of leptospirosis [14].

Although ideally serogroups are identified by using the MAT on isolates using reference antisera against various serogroups, these are unavailable in Sri Lanka and the transportation of this zoonotic pathogen to other countries is difficult and expensive. Therefore, as an alternative, the MAT was performed using patient serum samples to deduce the infecting Leptospira serogroup in this study. The serum samples reacted with a certain serovar strain, but their titres were relatively low, probably due to sample collection in the early stage of disease (5 and 6 days after the onset of fever).

Serogroups Canicola and Sejroe are considered to be highly adapted to dogs [15] and cattle [16], respectively, while rodents are known to harbour both strains [17, 18]. These serogroups have been isolated from leptospirosis-suspected patients in India and Uruguay, supporting its role as an important zoonotic pathogen [19, 20]. Although there was no evidence of direct exposure to potential reservoir animals in culture-positive patients, occupational or daily exposure to contaminated environments, such as domestic sewage and a gutter, suggest a zoonotic health issue in this study setting. This study emphasizes the importance of the contribution of zoonotic reservoir hosts to the public health risks of urban human leptospirosis in Western Province, Sri Lanka.

Table 2: Demographic and epidemiological data for leptospirosis-confirmed patients

<table>
<thead>
<tr>
<th></th>
<th>SLUSJ_182</th>
<th>SLUSJ_183</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>94 years</td>
<td>42 years</td>
</tr>
<tr>
<td>Gender</td>
<td>Female</td>
<td>Male</td>
</tr>
<tr>
<td>Occupation</td>
<td>–</td>
<td>Outdoor labourer</td>
</tr>
<tr>
<td>Exposure</td>
<td>Domestic sewage</td>
<td>Gutter filled with muddy water</td>
</tr>
<tr>
<td>Days of fever on admission</td>
<td>05</td>
<td>06</td>
</tr>
</tbody>
</table>

Funding information
This study was funded by a grant IASP/01/RE/MED/2015/37 awarded by University of Sri Jayewardenepura, Sri Lanka.

Acknowledgements
We acknowledge the consultant physicians and staff of the relevant hospital, the Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura and the Department of Microbiology, Faculty of Medicine, University of Peradeniya in Sri Lanka.

Conflicts of interest
The authors declare that there are no conflicts of interest.

Ethical statement
Ethical clearance for the study was obtained from the Ethics Review Committee of the University of Sri Jayewardenepura, Sri Lanka (ERC application no. 02/17).

References

Five reasons to publish your next article with a Microbiology Society journal

1. The Microbiology Society is a not-for-profit organization.
2. We offer fast and rigorous peer review – average time to first decision is 4–6 weeks.
3. Our journals have a global readership with subscriptions held in research institutions around the world.
4. 80% of our authors rate our submission process as ‘excellent’ or ‘very good’.
5. Your article will be published on an interactive journal platform with advanced metrics.

Find out more and submit your article at microbiologyresearch.org.