

5th International Conference on **Multidisciplinary Approaches** 2018

"Sustainable Development through Multidisciplinary Research"

PROCEEDINGS

JOINTLY ORGANIZED BY

Faculty of Graduate Studies - University of Sri Jayewardenepura.

Ministry of Science, Technology, Research, Skills Development & Vocational Training and Kandyan Heritage.

National Science Foundation.

31st August to 02nd September 2018

NUMERICAL INVESTIGATION OF THE BEST EFFICIENT TANDEM SOLAR CELL STRUCTURES USING THE BASE CELL MODELS OF MZO/CdTe AND CdS/CIGS CELL STRUCTURES

Ratnasinghe D.R. and Attygalle M.L.C.*

Department of Physics, Faculty of Applied Sciences, University of Sri Jayewardenepura, Sri Lanka lattygalle@sci.sjp.ac.lk

Abstract

Tandem solar cells have been researched to enhance the performance of second generation (II-VI) thin-film solar cells. In this study we have developed an efficient tandem solar cell model by optimizing the thickness of the (II-VI) layers. The tandem solar cell model consists of top cell, n-SnO₂/n-MZO/p-CdTe and bottom cell, n-CdS/p-Cu(In,Ga)Se₂(CIGS). The model layer parameters such as thicknesses of n-CdS, p-CIGS, and p-CdTe have been varied to improve the efficiency of the tandem solar cell and compared with the reported single junction thin-film solar cells. All the numerical experiments were conducted under one sun illumination condition with AM 1.5 G solar spectrum by using the Analysis of Microelectronic and Photonic Structures simulation software (AMPS-1D) and Solar Cell Capacitance Simulator (SCAPS 1-D) software. In this numerical simulation, the observed open circuit voltage was increased up to 1.413 V and efficiency was increased up to 28.84%.

Keywords: AMPS-1D, SCAPS-1D, Multi junction solar cell, Photovoltaics, AM1.5g