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Abstract Weerakoon-Fernando Method (WFM) is a widely accepted third order iterative
method introduced in the late 90s to solve nonlinear equations. Even though it has become
so popular among numerical analysts resulting in hundreds of similar work for single vari-
able case, after nearly two decades, nobody took the challenge of extending the method to
multivariable systems. In this paper, we extend the WFM to functions of several variables
and provide a rigorous proof for the third order convergence. This theory was supported by
computational results using several systems of nonlinear equations. Computational algo-
rithms were implemented using MATLAB. We further analyze the method mathematically
and demonstrate the reason for the strong performance of WFM computationally, despite it
requiring more function evaluations.
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1 Introduction

There are only a limited number of systems of nonlinear equations that can be solved by analytical
methods. Thus one has to use iterative numerical methods very frequently when solving systems of
nonlinear equations in research and industrial sector.

Among various types of nonlinear equation solvers introduced in the recent past, there is an
overwhelming number of research papers with Newton-type formulas and variants of Newton’s
method. An explosive growth of literature on this topic is visible since the introduction of WFM.
Examining over 700 publications citing the introductory paper by Weerakoon and Fernando (2000)
alone is sufficient to understand how the research in this area has evolved in the recent past. Peiris
et al. (1998) provides an overview of the situation up to the year 2011. Some have tried to formulate
methods with higher order convergence paying only a little attention to the required number of
function evaluations per iteration and hence jeopardizing the efficiency. Awawdeh (2009); Cordero et
al. (2009a); Cordero et al. (2009b); Cordero et al. (2010); Hou and Li (2010); Kim et al. (2009); Mir
et al. (2008); Parhi and Gupta (2008); Sharma et al. (2009); Thukral (2010); Wang and Liu (2010);
Özban (2000); are a minute fraction of such work trying to achieve the order of convergence as high
as 6 or 8.

Among other approaches, some of the researchers who tried to improve Halley’s and Chebyshev’s
methods to obtain more efficient algorithms are Kou and Li (2007a); Kou and Li (2007b); Kou and
Li (2007c); Kou (2007a); Kou (2007b); Ezquerro and Hernández (2009). Some tried to get rid of
the second derivative requirement. There are algorithms formulated via geometric and various other
means. One significant feature among many, even in improving Halley’s and Chebyshev methods, they
followed the technique used by Weerakoon and Fernando (2000) to prove the order of convergence.

Optimization problems naturally arising in various practical situations require solving systems
of nonlinear equations. However, apart from classical methods such as Newton’s, Chebyshev’s and
Halley’s, more efficient new algorithms are not available to solve systems of nonlinear equations.
Awawdeh (2009) uses a Homotopy analysis method to derive a family of iterative methods to solve
systems of nonlinear equations. However, there is a dearth of more efficient system solvers compared
to the numerous algorithms available for single-variable case. This is the very reason for us to engage
in this research to check whether the WFM that became so popular due to its efficiency would give
us similar results when extended for systems.

The Newton’s Method is in the forefront in this respect. It uses the vector valued function of
several variables and its Jacobian at each iteration. It is known that, under certain conditions, Newton’s
Method converges to the root quadratically even for functions of several variables Dennis and Robert
(1983).

In this paper, we suggest an improvement to the iterations of Newton’s Method to solve systems
of nonlinear equations by extending the Weerakoon-Fernando Method (WFM) for single variable
functions introduced by Fernando (1998); Weerakoon and Fernando (2000). We follow the same
improvement and replace the local linear model used in the Newton’s method by the superior nonlinear
model for WFM and derive the formula to solve systems of nonlinear equations and prove that it also
preserves the third order convergence.

Third order convergence of this improvement is verified using some computed results by apply-
ing WFM for several variables to a cross section of systems of nonlinear equations. We produce
computational results for the proposed method and the Newton’s Method using MATLAB. Results
are tabulated enabling the comparison of the two iterative methods.
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2 Preliminary Results

Definition 2.1. Nonlinear functions of several variables
Let D ⊂ Rn and suppose f : Rn → R is a real valued function which assigns a unique real number
denoted by f(x1, x2, x3, ..., xn) to each (x1, x2, x3, ..., xn) ∈ D. The setD is the domain of f and its
range is the set of values that f takes on, that is {f(x1, x2, x3, ..., xn) ∈ R|(x1, x2, x3, ..., xn) ∈ D}.
We often write z = f(x1, x2, x3, ...xn) to make explicit the value taken by f at the general point
(x1, x2, x3, ..., xn). The variables x1, x2, x3, ..., xn are independent and z is dependent.

Definition 2.2. A system of Nonlinear Equations
A system of nonlinear equations has the following form.

F (x) =



f1(x1, x2, ..., xn) = 0
f2(x1, x2, ..., xn) = 0
f3(x1, x2, ..., xn) = 0
. . .
. . .
fn(x1, x2, ..., xn) = 0

(2.1)

where each fi is a nonlinear function of n variables.
This system of n− nonlinear equations in n unknowns can alternatively be written as F (x) = 0 by
defining a vector valued function F (x).
Note: The first derivative and the second derivative of F (x), when they exist, will be the Jacobian
matrix J(F (x)) and the array of Hessian matrices H(F (x)), respectively.

Definition 2.3. Order of Convergence of an iterative scheme
Let the iterative sequence {xn};n = 1, 2, ... that converges to x∗ be generated by a numerical scheme. If there
exists a constant C ≥ 0, an integer n0 ≥ 0 and ρ ≥ 0 such that for all n > n0, the inequality (2.2) holds for
any vector norm ‖.‖,∥∥xn+1 − x∗∥∥ ≤ C‖xn − x∗‖ρ (2.2)

then the iterative scheme is said to converge to x∗ with ρth order convergence.

Definition 2.4. Computational Order of Convergence
Let x∗ be a root of the equation F (x) = 0 and suppose that xn−1, xn and xn+1 be consecutive iterations closer
to the root x∗, generated by an iterative scheme. Then the Computational Order of Convergence (COC) ρ of the
iterative scheme or the numerical algorithm can be approximated by:

ρ =
ln[

∥∥∥xn+1−x∗
∥∥∥∥∥xn−x∗∥∥ ]

ln[
∥∥xn−x∗∥∥∥∥∥xn−1−x∗

∥∥∥ ]
(2.3)

Theorem 2.1. (Existence of Matrix inverse) Let A ∈ Rn be a square matrix and ρ(A) be the spectral
radius of A, then (In −A)−1 exists and

(In −A)−1 =
∑∞

k=0 A
k (2.4)

if and only if ρ(A) < 1.
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2.1 Newton’s Method to solve systems of nonlinear equations

Newton’s method is an iterative method to approximate a single root x∗ of the system of nonlinear
equations F (x) = 0. The process starts with an initial approximation x(0) which is closer to x∗. Its
iterative formula is given by;

x(i+1) = x(i) − [J(F (x(i)))]
−1F (x(i)); i = 0, 1, ... (2.5)

when [J(F (x(i)))]
−1 exists. Here x(i) is the ith iterate. It is well known that Newton’s method is

quadratically convergent.

3 Weerakoon-Fernando Method (WFM) to solve nonlinear equations in one variable

Weerakoon and Fernando (2000) introduced a third order convergent Weerakoon - Fernando Method
(WFM) to solve nonlinear equations. The local model Mn(x) of WFM is given by the equation (3.1).

Mn(x) = f(xn) +
1

2
(x− xn)[f

′
(xn) + f

′
(x)] (3.1)

This leads to the implicit scheme of the Weerakoon-Fernando Method given by,

xn+1 = xn − 2f(xn)

[f ′ (xn)+f ′ (x∗
n+1)]

where;

x∗
n+1 = xn − f(xn)

f ′ (xn)
; n = 0, 1, 2, ...

(3.2)

4 Derivation of the Weerakoon-Fernando Method (WFM) to solve systems of
nonlinear equations

Lemma 4.1. WhenF is a vector valued function with non zero derivatives defined on the setD ⊂ Rn

and x, x0 ∈ D, the extension of the WFM to solve systems of nonlinear equations can be given as
follows.

xn+1 = xn − 2[J(F (xn)) + J(F (xλ
n+1))]

−1F (xn)
where;
xλ
n+1 = xn − [J(F (xn))]

−1F (xn); n = 0, 1, 2, ...
(4.1)

Proof: Taylor’s expansion of F (x) as given in Ortega and Rheinboldt (1970) is:

F (x) = F (xn) + F
′
(xn)(x− xn) +

1
2F

(2)(xn)(x− xn)
2 + ...

+ 1
(k−1)!F

(k−1)(xn)(x− xn)
k−1 +

∫ 1

0
(1−t)k−1

(k−1)! F (k)(xn + t(x− xn))(x− xn)
kdt

For k = 1;

F (x) = F (xn) +

∫ 1

0

J(F (xn + t(x− xn))(x− xn))dt (4.2)
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Let λ = xn + t(x− xn). Then:

dλ = (x− xn)dt (4.3)

Then:∫ 1

0

J(F (xn + t(x− xn))(x− xn))dt =

∫ x

xn

J(F (λ))dλ (4.4)

The indefinite integral of equation (4.4) is approximated as follows,∫ xn

x

J(F (λ))dλ ≈ 1

2
[J(F (xn)) + J(F (x))](x− xn) (4.5)

Then the equation (4.2) becomes

F (x) ≈ F (xn) +
1

2
[J(F (xn)) + J(F (x))](x− xn)

Thus we propose local model Mn(x) to approximate F (x) as follows.

Mn(x) = F (xn) +
1

2
[J(F (xn)) + J(F (x))](x− xn) (4.6)

If x = xn+1 is the root, then

Mn(x) = Mn(xn+1) = 0

Thus equation (4.6) gives:

Mn(xn+1) = F (xn) +
1
2 [J(F (xn)) + J(F (xn+1))](xn+1 − xn) = 0

⇒ xn+1 = xn − 2[J(F (xn)) + J(F (xn+1))]
−1F (xn)

(4.7)

This is an implicit scheme because it requires (n+ 1)th iterative step to find J(F (xn+1)). As in
the case of the one variable, we use Newton’s iterative step to compute xn+1 in the RHS as follows.

xλ
n+1 = xn − [J(F (xn))]

−1F (xn); n = 0, 1, 2, ...

Hence the Lemma 4.1.

5 Establishment of the third order convergence of WFM

Theorem 5.1. (Third Order Convergence)
Let F : D → Rn be a twice continuously differentiable vector valued function in the open convex
set D ⊂ Rn. Assume that there exists (i) x∗ ∈ D s.t. F (x∗) = 0 , (ii) σ > 0 s.t. ‖J(F (x))‖ > σ for
every x in the neighbourhood N(x∗, r) of x∗ and (iii) the inverse of J(F (x)) for all x ∈ D, then
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the order of convergence of the sequence generated by the WFM for systems of nonlinear equations
given by

xn+1 = xn − 2[J(F (xn)) + J(F (xλ
n+1))]

−1F (xn)
where;
xλ
n+1 = xn − [J(F (xn))]

−1F (xn); n = 0, 1, 2, ...
(5.1)

satisfies the following equation demonstrating the third order convergence.

∥∥En+1

∥∥ ≤
∥∥∥∥C2

2 +
1

2
C3

∥∥∥∥ ‖En‖
3 (5.2)

Here En = xn − x∗ and Ck = 1
k! [J(F (x∗))]−1F (k)(x∗)

Proof: By Taylor’s Expansion Ortega and Rheinboldt (1970) for F (x) we have:

F (x) = F (x∗) + J(F (x∗))(x− x∗) +
1

2!
F (2)(x∗)(x− x∗)2 +

1

3!
F (3)(x∗)(x− x∗)3 + ...

Substituting F (x∗) = 0, since x∗ is the root, we have

F (x) = J(F (x∗))(x− x∗) + 1
2!F

(2)(x∗)(x− x∗)2 + 1
3!F

(3)(x∗)(x− x∗)3 + ...

= J(F (x∗)[(x− x∗) + 1
2! [J(F (x∗))]−1F (2)(x∗)(x− x∗)2

+ 1
3! [J(F (x))]−1F (3)(x∗)(x− x∗)3 + ...]

(5.3)

when x = xn:

F (xn) = J(F (x∗){(xn − x∗) + 1
2! [J(F (x∗))]−1F (2)(x∗)(xn − x∗)2

+ 1
3! [J(F (x∗))]−1F (3)(x∗)(xn − x∗)3 +O((xn − x∗)4)}

F (xn) = J(F (x∗))[En + C2(En)
2 + C3(En)

3 +O((En)
4)]

(5.4)

where, Ck = 1
k! [J(F (x∗))]−1F (k)(x∗), k = 1, 2, ...

Differentiating equation (5.3) with respect to x:

J(F (x)) = J(F (x∗)) +
2

2!
F (2)(x∗)(x− x∗) +

3

3!
F (3)(x∗)(x− x∗)2 + ... (5.5)

when x = xn:

J(F (xn)) = J(F (x∗)) + 2
2!F

(2)(x∗)(xn − x∗) + 3
3!F

(3)(x∗)(xn − x∗)2 + ...

= J(F (x∗)) + 2
2!F

(2)(x∗)(En) +
3
3!F

(3)(x∗)(En)
2 + ...

= J(F (x∗))[I + 2
2! [J(F (x∗))]−1F (2)(x∗)(En) +

3
3! [J(F (x∗))]−1F (3)(x∗)(En)

2

+O((En)
3)]

J(F (xn)) = J(F (x∗))[I + 2C2(En) + 3C3(En)
2] +O((En)

3)

(5.6)

Then [J(F (x∗))]−1 is expressed as:

[J(F (xn))]
−1 = [J(F (x∗))[I + 2C2(En) + 3C3(En)

2] +O((En)
3)]−1 (5.7)
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Applying inversion of matrices equation (2.4) to equation (5.7):

[J(F (xn))]
−1 = [I − (2C2(En) + 3C3(En)

2) + (2C2(En) + 3C3(En)
2)2

+O((En)
3)][J(F (x∗))]−1 (5.8)

Then multiplying equation (5.8) with equation (5.4) we get

[J(F (xn))]
−1F (xn) = [I − (2C2(En) + 3C3(En)

2) + (2C2(En) + 3C3(En)
2)2

+O((En)
3)][J(F (x∗))]−1 × J(F (x∗))[En + C2(En)

2 + C3(En)
3 +O((En)

4)]
= [I − (2C2(En) + 3C3(En)

2) + (2C2(En) + 3C3(En)
2)2 +O((En)

3)]
×[En + C2(En)

2 + C3(En)
3 +O((En)

4)]
= En + C2(En)

2 + C3(En)
3 − 2C2(En)

2 − 2C2
2(En)

3 − 3C3(En)
3

+4C2
2(En)

3 +O(En
4)

[J(F (xn))]
−1F (xn) = En − C2(En)

2 + 2(C2
2 − C3)(En)

3 +O(En
4) (5.9)

Substituting equation (5.9) to equation (4.1) we get

xλ
n+1 = xn − [En − C2(En)

2 + 2(C2
2 − C3)(En)

3 +O(En
4)]

= (x∗ + En)− [En − C2(En)
2 + 2(C2

2 − C3)(En)
3 +O(En

4)]

=⇒ xλ
n+1 = x∗ + C2(En)

2 + 2(C3 − C2
2)(En)

3 +O(En
4) (5.10)

Substituting xλ
n+1 of (5.10) to x in (5.5) we get the following.

J(F (xλ
n+1)) = J(F (x∗)) + 2

2!F
(2)(x∗)(x∗ + C2(En)

2 + 2(C3 − C2
2)(En)

3 +O(En
4)− x∗)

3
3!F

(3)(x∗)(x∗ + C2(En)
2 + 2(C3 − C2

2)(En)
3 +O(En

4)− x∗)2 + ...
= J(F (x∗))[I + 2C2(C2(En)

2 + 2(C3 − C2
2)(En)

3 +O(En
4)

+3C3(C2(En)
2 + 2(C3 − C2

2)(En)
3 +O(En

4))2]
= J(F (x∗))[I + 2C2

2 (En)
2 + 4C2(C3 − C2

2 )(En)
3 +O(E4

n)]

(5.11)

Adding equations (5.6) and (5.11)

[J(F (xn)) + J(F (xλ
n+1))] = J(F (x∗))[I + 2C2(En) + 3C3(En)

2] +O((En)
3)

+J(F (x∗))[I + 2C2
2 (En)

2 + 4C2(C3 − C2
2 )(En)

3 +O(E4
n)]

= 2× J(F (x∗))[I + C2(En) + (C2
2 + 3

2C3)(En)
2 +O(E3

n)]

Then [J(F (xn)) + J(F (xλ
n+1))]

−1 can be expressed as:

[J(F (xn)) + J(F (xλ
n+1))]

−1 = 2× {J(F (x∗))[I + C2(En) + (C2
2 + 3

2C3)(En)
2 +O(E3

n)]}−1

= 1
2 [I + C2(En) + (C2

2 + 3
2C3)(En)

2 +O(E3
n)]

−1 × [J(F (x∗))]−1 (5.12)

Applying inversion of matrices equation (2.4) to equation (5.12):

[J(F (xn)) + J(F (xλ
n+1))]

−1

= 1
2 [I − C2(En)− C2

2 (En)
2 − ( 32C3)(En)

2 + (C2(En))
2 +O(E3

n)]× [J(F (x∗))]−1

= 1
2 [I − C2(En)− ( 32C3)(En)

2 +O(E3
n)]× [J(F (x∗))]−1

(5.13)
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Finally, substituting equations (5.13) and (5.4) to equation (4.1) with
xn = x∗ + En and xn+1 = x∗ + En+1

x∗ + En+1 = x∗ + En − 2× 1
2 [I − C2(En)− ( 32C3)(En)

2 +O(E3
n)]× [J(F (x∗))]−1

×J(F (x∗))[En + C2(En)
2 + C3(En)

3 +O((En)
4)]

En+1 = (C2 +
1

2
C3)(En)

3 +O(E4
n)

∥∥En+1

∥∥ ≤
∥∥∥∥(C2

2 +
1

2
C3)

∥∥∥∥ ‖En‖
3

Hence the third order convergence of the Weerakoon-Fernando Method (WFM) to solve systems of
nonlinear equations, by (2.2).

6 Computational Results

Generated computational results for a cross section of systems of nonlinear equations are given in
Tables 6.1, 6.2, 6.3, 6.4 and 6.5.

7 Discussion and Conclusion

Computational results given in Tables 6.1, 6.2, 6.3, 6.4 and 6.5 overwhelmingly support the theory
that WFM is third order convergent. Apparently, the WFM needs one more Jacobian evaluation at
each iteration when compared with the Newton’s method. However, it is evident by the computed
results presented in Tables 6.1, 6.2, 6.3, 6.4 and 6.5 that the total number of Jacobian evaluations
required by the WFM is less or almost the same. Further, as shown by almost all examples presented,
the WFM seems to be behaving very favorably for systems having trigonometric and exponential
functions.

In the quest for an explanation to the extraordinary performance of the WFM, we realized that
the nonlinear local model Mn(x) :

Mn(x) = F (xn) +
1

2
[J(F (x)) + J(F (xn))](x− xn) (7.1)

proposed in the process of deriving WFM possesses very special qualities embedded in it. At x = xn;

Mn(xn) = F (xn) +
1
2 [J(F (xn)) + J(F (xn))](xn − xn)

= F (xn)
(7.2)

Hence, the local model of WFM to solve functions of several variables agrees with the function
F (x), when x = xn.
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Differentiating the equation (7.1) with respect to x gives:

M
′

n(x) =
1

2
[J(F (x)) + J(F (xn)) + J

′
(F (x))(x− xn)] (7.3)

At x = xn;

M
′

n(xn) =
1
2 [J(F (xn)) + J(F (xn)) + J

′
(F (xn))(xn − xn)]

= 1
2 [2J(F (xn))]

= J(F (xn))

(7.4)

We know that F
′
(x) = J(F (x)), where J(F (x)) is the Jacobian of F (x).

Hence, the first derivative of the local model of WFM to solve functions of several variables agrees
with the first derivative J(F (x)) of the function, when x = xn.

Differentiating the equation (7.3) with respect to x,

M (2)
n (x) =

1

2
[H(F (x)) +H(F (xn)) +H

′
(F (x))(x− xn)] (7.5)

At x = xn;

M (2)
n (xn) =

1
2 [H(F (xn)) +H(F (xn)) +H

′
(F (x))(xn − xn)]

= 1
2 [2H(F (xn))]

= H(F (xn))

(7.6)

Here, H(F (x)) = J
′
(F (x) is the array of Hessian matrices representing the derivative of the

Jacobian or the second derivative of F (x).

Hence, the second derivative of the local model of WFM to solve functions of several variables
agrees with the second derivative H(F (x)) of the function, when x = xn.

As the equations (7.2), (7.4) and (7.6) demonstrate not only Mn(xn) and its derivative agrees
with the function and its derivative but also its second derivative agrees with the second derivative
of the function, at each iterative point.

This is the reason for the efficiency and the third order convergence demonstrated by the WFM.

Now that we have provided a rigorous proof of the third order convergence of the WFM for
systems of nonlinear equations and supported the theory with very strong computational evidence,
research community and the industry can apply this efficient algorithm as a credible nonlinear
system solver without hesitation.
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