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Abstract—With the recent changes in the Arctic climate,
increased transportation can be observed in the Arctic Ocean.
For safe navigation along the Arctic Sea routes, it is important
to accurately predict the ice conditions. In this study the ice-
ocean coupled Ice-POM model is improved by a Kalman filter
based data assimilation system. This system incorporates sea ice
observation data such as sea ice concentration, sea ice thickness
and sea ice velocity to improve the numerical predictions. Ocean
part of the model is based on the Princeton Ocean Model
while the Ice model considers the discrete characteristics of ice
along the ice edge. In an ice-ocean coupled model, atmospheric
forcing directly affects the accuracy of predictions. However,
different atmospheric data sets produced by different weather
agencies show large differences in the Arctic region. Model
errors largely depend upon the inaccuracies in forcing data.
This study uses an ensemble of multiple atmospheric data sets
collected from different weather agencies and the spread of the
ensemble is taken as an indicator of the model error covariance.
The Observation errors were varied according to the location
and the season. Assimilation has improved the predictions of
sea ice variables. It has also indirectly improved the ocean
conditions. This Atmospheric forcing based Kalman filter (AFKF)
method outperforms other assimilation methods such as direct
assimilation and nudging methods.

Index Terms—Data assimilation, Arctic Sea Routes, Sea ice
prediction, Satellite sea ice observations

I. MODEL DESCRIPTION

The ice dynamic model in Ice-POM considers the ice
discrete characteristics along the ice edge area. The ice thermo-
dynamic model is a zero-layer model with snow-cover effect
taken into account [1]. The ocean part of Ice-POM is based
on Princeton Ocean Model (POM) [2]. The model domain
is a z-sigma-coordinate, three-dimensional model with spatial
resolution of 25km for the whole Arctic domain and 2.5km for
the regional models (Figure 1) . The atmospheric forcing data
were obtained from ERA-interim six hourly products. Polar
science center Hydrographic Climatology data is used to set
the boundary conditions for ocean salinity and temperature.
First, the model is spun up for 12 years by providing the year
1979 atmospheric data cyclically. Entire model domain reaches
a steady state after 12-year spin up. Then the model was

integrated from year 1979 to 2013 with ERA-interim realistic
atmospheric forcing. After simulating this 33-year experiment,
the model could well reproduce the ice extent minimums in
1996, 2007, and 2012 [3].
For data assimilation experiments, year 2013 is selected. The
model behavior in the year 2013 shows that the overall sea
ice extent in the year 2013 is overestimated [4]. One of the
reasons for discrepancies between the model sea ice extent
and the observation sea ice extent is the imperfections in
ocean boundary conditions. PHC data set provides climatol-
ogy data which is lower in temperature than the warming
temperatures in the Atlantic Ocean. Sea ice thickness in the
model is underestimated near the North Pole compared to
observation due to the overestimation of sea ice velocity in
the same area that advects sea ice away from the North Pole.
Since ocean boundary conditions and initial data are set by
the Polar science center Hydrographic Climatology data, the
model underpredicts both sea surface salinity and sea surface
temperature.

Fig. 1. (a)whole Arctic domain(left) and (b) regional model(right)
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II. DATA ASSIMILATION TECHNIQUE

Sea ice concentration is obtained from the advanced
microwave scanning radiometer (AMSR2) onboard the
GCOM-W satellite. Daily gridded sea ice concentration
data set is extracted from Arctic Data archive System.
Daily sea ice thickness is calculated using an algorithm [5]
based on AMSR-2 satellite data. Sea ice velocity data set is
extracted from KIMURA Sea ice velocity data set [6]. Sea
ice concentration data are available in a daily interval for
the year 2013. Sea ice thickness and sea ice velocity data
sets are only used from January to May of 2013 due to their
unreliability in summer.
The timespan of data assimilation experiment is set to year
2013. In an ice-ocean coupled model, atmospheric forcing
directly affects the accuracy of predictions. Especially,
precipitation data directly relates to the sea ice formulation
process. However, different atmospheric data sets including
reanalysis data sets show large differences in the Arctic
region. In a study that evaluates seven atmospheric products
over the Arctic, shows that there are large variations in
atmospheric data sets in Arctic [7]. According to the study,
different products show large variations in sea level pressure
over Greenland. Wind speed shows variations in most parts
of Arctic Ocean. Precipitation data also varies over North
Atlantic and North Pacific Ocean. In this study an ensemble
of multiple atmospheric data sets is considered, and the
spread of the ensemble is proportional to the uncertainties in
model prediction. Hence this spread is taken as an indicator
of the model error variance.
Model error covariance matrix P f

e in ensemble Kalman filter
is defined in terms of the true state as

P f
e = (ψf − ψt)(ψf − ψt)T (1)

where ψf is model forecast and ψt is the true state [8].
Ensemble numerical predictions are widely used recently
due to their better predictability skills compared to single
computations. These ensemble predictions are performed using
different atmospheric forcing data sets or by differentiating
initial conditions [9]. Model errors largely depend upon the in-
accuracies in forcing data. In a computation that uses ensemble
of multiple atmospheric data sets, the spread of the ensemble
is proportional to the uncertainties in model prediction. Hence
this spread could be an indicator of the model error variance.
In atmospheric forcing Kalman filter(AFKF) method an en-
semble of multiple atmospheric data is used. Since there are
significant differences in the atmospheric data sets, the true
state is assumed to be the mean of the ensemble prediction.
Therefore, the true state is considered to be ψf , the ensemble
mean of the prognostic variable. In each ensemble member,
the model is forced using different atmospheric forecast data
from seven atmospheric agencies. The equation 1 is revised
as below to use ensemble mean as the truth.

P f
e = (ψf − ψf )(ψf − ψf )T (2)

Ke = P f
e H

T (HP f
e H

T +R)−1 (3)

ψa
i = ψf

i +Ke(d−Hψf
i ) (4)

P a
e = (I −KeH)P f

e (5)

Observation variance is varied according to the season and
the location where the values in the sea ice edge are different
from that of the ice pack. Higher values are selected during
summer due to the unreliability of satellite observations in
summer. Observation errors and model errors are assumed to
be uncorrelated, yielding a diagonal matrix, which is trivial
to invert in equation 3. In this study ψf

i is model forecast of
the ensemble member i ε {1,2...N}. H is a linear operator that
transfers the model state to the observation space. Ke is the
Kalman gain, which is given in equation 3. The updated state
estimate (ψa

i ) is given in equation 4, where d is observation.
Analyzed model state covariance (P a

e ) is given in equation 5.
The method used is inspired by the Ensemble Kalman filter
method [8]. However, the key difference between the two
methods is that in this study the ensemble is formulated by
using different atmospheric data sets, instead of observation
perturbation that is often used in ensemble Kalman filter
method. Even though the error variance is assumed to be non-
correlated the impact of non-correlated variables are consid-
ered through corrections. It prevents the discrepancies between
assimilated and non-assimilated variables.
The whole Arctic model with 25km resolution cannot be
used to investigate the fine details of sea ice dynamics such
as ice edge positions and extents accurately for applications
such as navigation in ASRs. Therefore, regional models are
required for those applications. Figure 1(b) consists of the area
with 50E:165E longitude and 68N:85.5N latitudes. The region
consists of Laptev Sea, part of Kara and East Siberian Seas.
The basic mechanisms of the model used in these high-
resolution computations are same as those used in whole
Arctic computation. The resolution of zonal and meridional
directions are set to be 2.5km2.5km in horizontal plane and
33 sigma layers in the vertical direction. Initial ice, ocean
conditions and boundary conditions are given by the output of
the whole Arctic AFKF assimilation run. Regional model run

Fig. 2. Time series of Frobenius norm of the Kalman gain matrix for AFKF
experiment sea ice concentration



Fig. 3. Diagonal components of Kalman gain matrix of AFKF experiment
sea ice concentration. (a)02/2013(top) (b)09/2013 (bottom)

starts at the end of August (28th August 2013) and runs until
the end of freezing season (November 2013).

III. RESULTS AND DISCUSSION

Figure 2 presents the magnitude of the Kalman gain matrix
when sea ice concentration is assimilated. It is presented as
the Frobenius norm. Frobenius norm is calculated to be the
trace of the squared of the diagonal components of the Kalman
gain matrix. It is an indication of the model error. Model error
grows gradually in winter and the freezing season. Model error
is a maximum in summer where the uncertainty of the forcing
data is high.
Figure 3 presents the structure of the Kalman gain matrix.
The Kalman gain is an indication of how model error and the
observation error are reflected in the assimilation. In winter,
assimilation has the strongest impact on sea ice edge. Due to
similarity between observation and model in ice pack, in win-
ter, assimilation has very little impact on sea ice concentration
in the ice pack.
In summer uncertainty of forcing data is high, especially along
the sea ice edge, increasing the model error along the sea
ice edge. This is reflected in the Kalman gain in figure 3
(b) where observations are weighted along the sea ice edge.
Due to similarities in model and observations in the ice pack,
assimilation has little impact on sea ice concentration of the
ice pack.
Figure 4 compares sea ice extent in the Barents sea where

there is marginal sea ice. It can be observed that the sea ice
extent has improved compared to that of the model. It should
be noted that the AMSR2 observations also contains errors.
This is reflected in atmospheric forcing Kalman filter method
where sea ice extent is not too close and not too far from the
observation.

Model under estimates sea ice thickness in the polar area
compared to the Cryosat data set. This is improved with the
assimilation run. Figure 5 presents the root mean squared
difference(RMSD) between the assimilation and the cryostat
data from October 2013 to December 2013 in the same area.
While nudging methods show a growth in RMSD, atmospheric
forcing Kalman filter method shows a decline. It can be

Fig. 4. Time series of sea ice extent in Barents sea from AMSR2 observations,
model run and AFKF assimilation run

seen that the sea ice thickness hasnt grown abnormally in
atmospheric forcing Kalman filter method. The reason for
this sea ice thickness rise is the improved sea ice velocity
in the Polar area as presented in figure 6. Sea ice velocity has
decreased in the area increasing sea ice thickness. Changes in
salinity are observed as a result of assimilation experiments.
This is specifically highlighted in the areas where there is a
significant sea ice extent difference between the model and the
assimilation
There are two possible reasons for the rise in sea surface
salinity(SSS). When the sea ice is removed as a correction
done by assimilation, freshwater is being removed as a result.
This is the reason where the salinity difference is highlighted
in areas like Barents Sea where there are disparities between
model sea ice extent and AMSR2 sea ice extent.
For the same reason the SSS bias becomes a maximum
in summer according to figure 7. In the model with no
assimilation, sea ice melts in summer and therefore sea surface
salinity is low in summer but in the assimilation there is no
ice to melt hence the bias is larger in summer. Another reason
for the rise in SSS is evaporation. When there is open ocean,
surface albedo is about 0.06 where in sea ice the value can vary
between 0.5-07. Therefore, more heat is absorbed by the ocean

Fig. 5. Time series of the root mean squared difference(RMSD) between
different methods and independent cryostat data



Fig. 6. Time series of mean sea ice velocity in polar area

and freshwater is evaporated increasing the salinity in those
areas. Effect of salinity extends beyond the surface vertically
due to the corrections that are done to inner ocean

To validate the assimilation experiment, the regional model
was run in summer extracting the initial and boundary condi-
tions from the AFKF whole Arctic model assimilation. One of
the issues mentioned in [1] is that the regional model is not cre-
ating adequate ice in the freezing season. However According
to figure 8 its clear that the regional model initialized by whole
Arctic AFKF assimilation can reproduce sea ice extent that is
in line with observations both in melting and freezing seasons.
According to [1], the maximum bias between regional model
and AMSR-2 observation is about 0.4 million square kms
however, the maximum bias from the regional model figure
8 is about 0.13 million square kms in the freezing season

IV. CONCLUSIONS

Sea ice concentration, sea ice thickness and sea ice velocity
are assimilated in the study. Assimilating sea ice variables
improved ocean and ice conditions as expected. It is evi-
dent from the changes in sea ice extent, sea ice thickness,
ocean temperature and ocean salinity. Non-assimilated sea ice
variables have also been indirectly improved by assimilation.
Improvements in sea ice variables are emphasized in the

Fig. 7. Sea surface salinity bias(AFKF assimilation SSS-model SSS) in
different months

Barents Sea and near the pole. Sea ice thickness is improved
near the pole as a result of decreased sea ice velocity near
the pole. Sea ice extent is improved in the whole domain with
assimilation
It can be observed that sea surface salinity is altered in the
places where sea ice concentration is improved. This is a result
of correcting sea ice extent in over predicted areas where
freshwater is being removed from the model and increased
evaporation in open ocean areas. Sea surface temperature has
also improved as a result of improved sea ice extent.
The whole Arctic assimilation run is used to initialize regional
model with 2.5km resolution. Regional model initialized by
the whole Arctic AFKF assimilation can reproduce sea ice
extent that is in line with observations. Specifically, accuracy
has been improved in the freezing season. Regional model
assimilation has further improved the prediction of the ice
extent.
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