A study of the chemistry of *Artocarpus heterophyllus* Lam. leaves and identification of active antioxidant and hypoglycemic fractions/ compounds

BY

KURUKULASOORIYA SAWALAKKARAGE SHIVANTHI PALIKA FERNANDO

M. Phil.

January 2016

A study of the chemistry of *Artocarpus heterophyllus* Lam. leaves and identification of active antioxidant and hypoglycemic fractions/ compounds

BY

2017

ිතාබ අ

KURUKULASOORIYA SAWALAKKARAGE SHIVANTHI

PALIKA FERNANDO

Thesis submitted to the University of Sri Jayewardenepura for the award of the Degree of the Master of Philosophy in

Chemistry on

January 2016

DECLARATION

"The work described in this thesis was carried out by me under the supervision of Prof. A. M. Abeysekera (Senior professor, Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda), Prof. (Mrs.) U.G. Chandrika (Professor, Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda), Dr. (Mrs.) C. Padumadasa (Senior lecturer, Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda), Dr. A.K.E. Gunathilake (Senior lecturer, Department of Pharmacology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda) and a report on this has not been submitted in whole or in part to any university or any other institution for another Degree/Diploma."

14.06.2017

Conando

Date

Signature

We certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the university for the purpose of evaluation.

14/06/2017

Date

All Abergsehere

Prof. A. M. Abeysekera Department of Chemistry University of Sri Jayewardenepura

14/06/2017

Date

chander Sort

Prof. U. G. Chandrika Department of Biochemistry University of Sri Jayewardenepura

16/06/17

Date

Chayan L Pall

Dr. (Mrs.) C. Padumadasa Senior Lecturer Department of Chemistry University of Sri Jayewardenepura

14.6.17

Date

W. . . l

Dr. A. K. E. Goonathilake Faculty of Medical Sciences University of Sri Jayewardenepura We certify that all the corrections, additions and ammendments have been done in accordance to the comments and suggestions of the examiners.

14/06/2017

Date

Ahr Abeyseleen

Prof. A. M. Abeysekera Department of Chemistry

14/06/2017

Date

Chandet Snet

Prof. U. G. Chandrika Department of Biochemistry

16/-6/17

Date

Chry L Pad

Dr. (Mrs.) C. Padumadasa Department of Chemistry

14.6.17

Date

4...1

Dr. A. K. E. Goonathilake Faculty of Medical Sciences

TABLE OF CONTENTS

LIST OF TABLES	ix
LIST OF FIGURES	xii
ABBREVIATIONS	XV
ACKNOWLEDGEMENTS	xix
ABSTRACT	xxii
1.0 INTRODUCTION	1
2.0 LITERATURE REVIEW	4
2.1 Introduction	4
2.2 Diabetes mellitus	6
2.2.1 Prevalence	6
2.2.2 Classification of diabetes mellitus	10
2.2.3 Complications	16
2.2.4 Management of Diabetes Mellitus	22
2.2.5 Natural Products in the treatment of Diabetes mellitus	34
2.2.6 Role of reactive oxygen species (ROS) and advanced glycation end	
products (AGEs) in diabetes mellitus	37
2.3 Artocarpus heterophyllus	48
2.3.1 Distribution and morphology	48
2.3.2 Common uses of the A. heterophyllus	49

2.3.3 Ethnomedical usage of A. heterophyllus	51
2.3.4 Biological activities of A. heterophyllus	54
2.3.5 Chemistry of the A. heterophyllus	71
2.4 Scope of the thesis	107
3.0 METHODOLOGY	108
3.1 General Procedures	108
3.2 Materials	109
3.2.1 Materials for chromatography	109
3.2.2 Chemicals	109
3.2.3 Plant materials	109
3.3 Methods	110
3.3.1 Extraction	110
3.3.3 Fractionation of EA/W	113
3.3.4 In vivo studies	114
3.3.5 In vitro studies	117
3.3.6 Isolation of compounds	122
3.3.7 Software	132
3.3.8 Statistical analyses	132
4.0 RESULTS AND DISCUSSION	133
4.1 Extraction	133
4.2 Optimization of extraction	135

4.3 Fractionation

4.4 In vivo studies	138
4.4.1 Induction of diabetes mellitus	138
4.4.2 Effects on blood glucose levels in normoglyceamic rats after	
administration of fractions of EA/W	139
4.4.3 Effect on blood glucose levels in diabetic rats after administration	on of
fractions of EA/W	141
4.4.4 Effects on blood glucose levels in normoglyceamic rats with the	
administration of a glucose load (Glucose tolerance Test)	144
4.4.5 Effects on blood glucose levels in diabetic rats with the adminis	tration
of a glucose load (Glucose tolerance Test)	147
4.5 <i>In vitro</i> studies	152
4.5.1 Antioxidant activity	152
4.5.2 α - glucosidase inhibition assays	156
4.5.3 Antiglycation assay	158
4.5.4 Anti-inflammatory activity	159
4.6 Isolation of Compounds	161
4.6.1 Compound isolation from M3	162
4.6.2 Compound isolation from M2	181
4.6.3Compound isolation of M4	185
5.0 CONCLUSIONS	190
6.0 REFERENCES	191
APPENDIX 01	211

136

APPENDIX 02	213
APPENDIX 03	214
APPENDIX 04	215
APPENDIX 05	216
APPENDIX 06	217
Appendix 07	218
Appendix 08	219
Appendix 09	220

LIST OF TABLES

Table 2. 1 Regional estimates for diabetes (age 20-79 years) 2013 and 2035.	8
Table 2. 2 South East Asian country estimates for diabetes (20-79 years), 2013.	9
Table 2. 3 Classification of drugs used in Diabetes mellitus based on mechanism.	23
Table 2. 4 Advantages and disadvantages of synthetic drugs used in diabetes mellit	us.32
Table 2. 5 Ethnomedical usages of A. heterophyllus.	51
Table 2. 6 Secondary metabolites found in A. heterophyllus.	72
Table 2. 7 Identity of substituents on Flavanones with reference to Figure 2.6 isolat	ed
from the A. heterophyllus.	86
Table 2. 8 Identification of substituents on flavones (with reference to Figure 2.7) in	n
group I.	89
Table 2. 9 Identification of substituents on flavones (with reference to figure 2.8) in	1
group II.	91
Table 2. 10 Identification of substituents on flavones (with reference to Figure 2.9)	in
group III.	92
Table 2. 11 Identification of substituents on flavones (with reference to Figure 2.12) in
group VI.	93
Table 3. 1 Concentration gradient of fractions of EA/W used for determination of I	C ₅₀
values.	120
Table 3. 2. Weights and numbers of initial fractions combined to produce M1 - M17	7.123
Table 4. 1 Percentage yields of fractions / extracts.	134
Table 4. 2 Extractability of repeated ethyl acetate fractions of water extract.	135
Table 4. 3 Percentage yields of sephadex LH-20 column fractions .	137
Table 4. 4 Fasting blood glucose levels of diabetic induced rats after 2 weeks.	139

V
140
141
144
A/W
148
151
у.
154
n
156
156
156 157
156 157 158
156 157
156 157 158 160
156 157 158 160
156 157 158 160 165
156 157 158 160 165 167
156 157 158 160 165 167

Table 4. 20NMR Data comparisson of compound [105] and reported compounds	178
Table 4. 21Comparison of observed NMR spectral data of compound [93] and repo	orted
NMR spectral data	185
Table 4.22 Comparison of observed NMR spectral data of compound [106] and rep	orted
NMR spectral data	189

LIST OF FIGURES

Figure 2. 1 Amino acid structure of human insulin.	26
Figure 2. 2 Mechanism of sulfonylurea.	29
Figure 2. 3 Simplified reaction pathway involved in the formation of advanced glyca	ted
end products (Nawale et al., 2006).	40
Figure 2. 4 Non fluorescent/ non cross linked advanced glycated end products.	41
Figure 2. 5 Fluorescent/ cross linked advanced glycated end products.	42
Figure 2. 6 Basic structure of flavanone.	85
Figure 2. 7 Basic structure for Flavanonol.	87
Figure 2. 8 Basic structure for flavone carbon skeleton.	87
Figure 2. 9 Basic structure for flavone in group II.	91
Figure 2. 10 Basic structure for flavone in group III.	92
Figure 2. 11 Structure for flavone in group V.	93
Figure 2. 12 Structure of flavone morusin.	94
Figure 2. 13 Structure for flavone in Artoindonesianin S.	94
Figure 2. 14 Structure for flavone in Artonin B.	95
Figure 2. 15 Structure for flavone in Artonin F.	95
Figure 2. 16 Structure for flavone Artonin A	96
Figure 2. 17 Structure for flavone Cycloheterophyllin	96
Figure 2. 18 Structure of flavone Cycloheterophyllin diacetate and peracetate	97
Figure 2. 19 Structure of flavone Artocarpfuranol [60]	97
Figure 2. 20 Structure of flavonol Morin [61]	98
Figure 2. 21Structure of Isoflavones 3',4'-trimethoxy-6,7-methylenedioxyisoflavone	
[62]	98

Eisen 2, 22 Streeten of Stillower	00
Figure 2. 22 Structures of Stilbenes	99
Figure 2. 23 Structures of Chalcones [65] - [76]	99
Figure 2. 24 Structures of Fattyacid esters [77] - [83]	102
Figure 2. 25 Structures of Benzofuran derivatives [84] - [87]	103
Figure 2. 26 Structure of dihydrophaseic acid 4'-O-β-D-glucopyranoside [88]	103
Figure 2. 27Structure of Isoquercitrin [89]	104
Figure 2. 28 Structures of Xanthones [90] - [92]	104
Figure 2. 29 Structures of Terpenoids [93] - [96]	105
Figure 2. 30 Structures of Benzoic acid derivatives [97] - [99]	105
Figure 2. 31Structures of Missalaneous compound [100] - [102]	106
Figure 4. 1 Structure of streptozotocin.	138
Figure 4. 2. Variation of blood glucose levels with time in diabetic rats after	
administration of fractions of EA/W.	142
Figure 4. 3 Reduction in blood glucose levels with time in diabetic rats after	
administration of fractions of EA/W.	143
Figure 4. 4 Variation of blood glucose levels of normoglyceamic rats with the time	after
administration of sample followed by glucose load.	145
Figure 4. 5 Percentage reduction of blood glucose level of normoglyceamic rats w	ith
glucose load with respect to control one hour after glucose load.	147
Figure 4. 6 Variation of blood glucose levels of diabetic rats with time after	
administration of sample followed by glucose load.	149
Figure 4. 7 Percentage reduction of increase in blood glucose level of diabetic rats	with
glucose load with respect to control one hour after glucose load	150
Figure 4. 8 DPPH radical scavenging mechanism.	153

xiii

Figure 4. 9 Superoxide radical scavenging assay.	155
Figure 4. 10 ¹³ C-NMR spectrum of 3, 4-dihydroxymegastigman-7-en-9-one from th	ie
leaves of A. heterophyllus.	164
Figure 4. 11HMBC correlations of [103].	166
Figure 4. 12 Structure of compound [103].	166
Figure 4. 13 13C-NMR spectrum of 1, 3, 4-trihydroxy-7-ene-megastigman-9-one fr	om
the leaves of A. heterophyllus.	169
Figure 4. 14 HMBC correlations of [104].	170
Figure 4. 15 Structure of compound [104].	171
Figure 4. 1 ¹³ C-NMR spectrum of 13-Hydroxy-3-oxo-α-ionol [105] from the leaves	of
A. heterophyllus.	174
Figure 4. 17 HMBC correlations of compound [105].	176
Figure 4. 18 Structure of compound [105].	176
Figure 4. 19 Structures of Apocynol B and Glochidionionol C.	177
Figure 4. 20 Provisional structure for compound AH 48 [106].	180
Figure 4. 21 ¹³ C-NMR spectrum of compound AH48.	181
Figure 4. 22. ¹³ C-NMR spectrum of 4-hydroxy-benzoic acid from the leaves of A.	
heterophyllus.	183
Figure 4. 23 Structure of compound [93].	184
Figure 4. 24 HMBC correlations of compound [93].	184
Figure 4. 25 ¹³ C-NMR spectrum of 3, 4-dihydroxy-benzoic acid from the leaves of	A.
heterophyllus.	187
Figure 4. 26 Structure of compound [107].	188
Figure 4. 27 HMBC correlations of compound [107].	188

ABBREVIATIONS

¹³ C NMR	Carbon-13 nuclear magnetic resonance
¹ H NMR	Proton nuclear magnetic resonance
A. heterophyllus	Artocarpus heterophyllus
A_0	Absorbance of the control
A_1	Absorbance of fractions sample/standard
ABTS	2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)
	diammonium salt
AGE	Advanced Glycation End product
ATP	Adenosine Triphosphate
BGL c0	Blood glucose level of control 1st hour after administration
	of water immediately before the glucose load
BGL c1	Blood glucose level of control 1 hour after administration
	of glucose load
BGL t0	Blood glucose level of test group 1st hour after
	administration of sample immediately before the glucose
	load
BGL t1	Blood glucose level of test group 1 hour after
	administration of glucose
BHA	Butylated Hydroxyanisole
BHT	Butylated Hydroxytoluene
BSA	Bovine Serum Albumin
COSY	Homonuclear correlation spectroscopy

COX-2	Cyclooxygenase 2
DKA	Diabetic keto acidosis
DMPD	N, N-dimethyl-p-phenylendiamine
DMSO	Dimethyl sulfoxide
DNA	Deoxyribonucleic acid
DPP-IV	Dipeptidyl peptidase 4
DPPH	2,2-diphenyl-2-picrylhydrazyl
EA/W	Ethyl acetate fraction of the water extract
EIMS	Electron ionization mass spectrometry
FAG-MS	Fast atom bombardment mass spectra
FBG	Fasting Blood Glucose
FRAP	
GDM	Gestational Diabetes Mellitus
GDM GIP	Gestational Diabetes Mellitus Glucose-dependent Insulinotropic Peptide
GIP	Glucose-dependent Insulinotropic Peptide
GIP GLP-1	Glucose-dependent Insulinotropic Peptide Glucagon-like Peptide-1
GIP GLP-1 GLUT2	Glucose-dependent Insulinotropic Peptide Glucagon-like Peptide-1 Glucose Transporter
GIP GLP-1 GLUT2	Glucose-dependent Insulinotropic Peptide Glucagon-like Peptide-1 Glucose Transporter Glycated haemoglobin (A1c), which identifies average
GIP GLP-1 GLUT2 HbA1C	Glucose-dependent Insulinotropic Peptide Glucagon-like Peptide-1 Glucose Transporter Glycated haemoglobin (A1c), which identifies average plasma glucose concentration.
GIP GLP-1 GLUT2 HbA1C	 Glucose-dependent Insulinotropic Peptide Glucagon-like Peptide-1 Glucose Transporter Glycated haemoglobin (A1c), which identifies average plasma glucose concentration. Hanks Balanced Salt Solution, containing calcium chloride
GIP GLP-1 GLUT2 HbA1C HBSS	Glucose-dependent Insulinotropic PeptideGlucagon-like Peptide-1Glucose TransporterGlycated haemoglobin (A1c), which identifies averageplasma glucose concentration.Hanks Balanced Salt Solution, containing calcium chlorideandmagnesium chloride
GIP GLP-1 GLUT2 HbA1C HBSS	Glucose-dependent Insulinotropic PeptideGlucagon-like Peptide-1Glucose TransporterGlycated haemoglobin (A1c), which identifies averageplasma glucose concentration.Hanks Balanced Salt Solution, containing calcium chlorideandmagnesium chlorideHigh Density Lipoprotein

HR-FAB MS	High Resolution Fast-Atom Bombardment mass
	spectrometry
HSQC	Heteronuclear Single-Quantum Correlation
IC ₅₀ value	Concentration of an inhibitor where the response (or
	binding) is reduced by half.
iNOS	inducible Nitric Oxide Synthase
IR Spectroscopy	Infrared Spectroscopy
J	Coupling constant
LA	Lactic acidosis
LDL	Low density lipoprotein
MGO	Methylglyoxal
MTT	tetrazolium
NADH	β -nicotanamide adenine dinucleotide (NADH)
NBT	Nitro blue tetrazolium
NCEs	New chemical entities
NOESY	Nuclear Overhauser Enhancement Spectroscopy
NPH	Isophane insulin (suspension of insulin with protamine)
PG	Propyl galate
PMS	Phenazine MethoSulphate
pNPG	p-nitrophenyl-α-D-glucopyranoside
PPAR-gamma	Peroxisome Proliferator-Activated Receptor-gamma
R _f	Retention factor
RNS	Reactive nitrogen species
ROS	Reactive Oxygen species

RPHPLC	Recycling Preparative High Performance Liquid
	Chromatography
SOZ	Serum Opsonized Zymosan
SRB	Sulforhodamine B
TBHQ	tertiary butyl hydroquinone
TLC	Thin Layer Chromatography
t _R	Retention time
UV-visible spectroscopy	Ultraviolet-visible spectroscopy
VLDL	Very low density lipoprotein

ACKNOWLEDGEMENTS

I take pride in acknowledging my supervisor, Prof. Ajit Abeysekera for his expert guidance, sincere advice and continuing support. His inspiring encouragements enabled me to carry out the research and awoke a scientific attitude in me. His kindness always gives me the new strength to face the problems of both research and life. To him, I am forever grateful.

The work embodied in this thesis would never been accomplished without the keen interest, precious attention and continuous encouragement of my supervisor Prof. Mrs. U.G. Chandrika. I am grateful to her for her guidance, thoughtful comments and suggestions and especially for her very kind support throughout the course of this research work and inspiring support and interest in my professional development.

I would like to express my sincere gratitude to my supervisor, Dr. Mrs. Chayanika Padumadasa for the invaluable time that I spent with her, for all of her advice, help and encouragement during the project. Without her attention and inspiration, I would not have been able to complete this project.

I wish to acknowledge my supervisor, Dr. A. K. E. Goonathilake for his support and encouraging especially at the commencement of this work.

I also wish to express my grateful appreciation of Prof. Iqbal Choudhary for giving me an opportunity to work in the HEJ Research Institute Research of Chemistry, Karachi. He generously offered his hand and his heart in support and guidance for me as a developing young researcher. I will be always grateful to him for his sincerity, kindness and encouragement throughout my research work.

xix

I thank Dr. Vinitha Thadani for useful discussions and guidance on chromatography and for facilitating my visit to the HEJ Research Institute, Karachi.

Special thanks go to Mr. T. M. S. G. Thennakoon for valuable discussions on chromatography and for his guidance.

I also wish to express my heartiest gratitude to all academic and nonacademic staff of the department of Chemistry, University of Sri Jayewardenepura for their cooperation during my research studies. Special thanks go to Mr. Senadeera, Mr. Sisira and to Mr. Nilaj for facilitating my laboratory work.

I would also like to extend my appreciation to everyone at International center for chemical and biological Sciences, Karachi, who have contributed to make this work possible. Special thanks go to Dr. Muhammad Hafizur Rahman for guiding me through the animal studies which I have done at International center for chemical and biological Sciences, Karachi. I am so grateful to Dr. Mujeeb Ur Reheman for his help throughout my stay at HEJ Research Institute of Chemistry and Dr. *Achyut Adhikari* for helping me with the NMR analysis. Thanks are also due to Dr. Sammer Yousuf, Dr, Atia-tul-Wahab, Dr. Saima Rasheed and Ms. Sadia Siddiq and to all my friends at HEJ Research Institute specially to Dr.Thin Hling, Dr. Azeana Zahari, Dr. Shabbhir hussain, Dr. Hamdy Kashtoh and Dr. Yann Fongan for their care and help during my stay at the HEJ Research Institute of Chemistry.

I would like to acknowledge the assistance of Probationary lecturer, Department of Botany, University of Sri Jayewardenepura, Mr. Isuru Kariyawasam and Mrs. K. D. Degambada in the authentication of plant materials.

I feel extremely fortunate to have as friends my laboratory colleagues Ureshani, Durga, Kalpani and Tharangi with whom I shared not only the happiest times of my life but

XX

also difficult moments of my life. I am especially grateful for them for their open ears and kind words which have sustained me along the way.

I thank my parents who are the beacon of my life for their abiding love and prayers and for their unfailing support. I have no words to acknowledge their contributions in my life. Without their help this thesis would not have been possible.

I would like to express my deepest love to my devoted loving husband Anura Wickramanayake who always supported in every aspect of my life including the completion of the arduous journey.

Last but not least, I am greatly indebted to my two sons Sanula and Danula who form the backbone and origin of my happiness. A study of the chemistry of *Artocarpus heterophyllus* Lam. leaves and identification of active antioxidant and hypoglycemic fractions/ compounds Fernando K. S. S. P

ABSTRACT

The aqueous extract of the senescent leaves of *Artocarpus heterophyllus* is traditionally used in Sri Lanka as a hypoglyceamic agent. It has been previously reported that the hypoglyceamic activity lies in the ethyl acetate fraction of the water extract (EA/W). The main purpose of this study was to identify hypoglyceamic fractions/ compounds from the EA/W fraction. The study also encompassed antioxidant, antiglycation, α glucosidase inhibition and anti-inflammatory assays. The EA/W fraction was fractionated by chromatography on sephadex LH-20. Five fractions eluting with the following solvent systems were obtained. Fraction 1, dichloromethane/ hexane (4:1), Fraction 2, dichloromethane/acetone (3:2), Fraction 3, dichloromethane/acetone (1:4), Fraction 4, dichloromethane/ methanol (1:1) and Fraction 5, methanol. These fractions were screened for *in vivo* hypoglyceamic and antidiabetic activities and as well as *in vitro* antioxidant, antiglycation, α -glucosidase inhibitory and anti-inflammatory assays.

Each fraction was tested for its effect on the blood glucose levels of fasted normal and diabetic rats. None of the fractions caused hypoglyceamia on normal rats. However there was significant (p < 0.001) reduction in the blood glucose level during the first three hours after giving the fractions 3, 4 and 5 to diabetic rats. Of the three fractions fraction 4 showed the highest hypoglyceamic activity. Fractions 3, 4 and 5 were also the

most active in the glucose tolerance test carried out on both normoglyceamic and diabetic rats. However fraction 3 was the most active in this assay. In both assays fractions 3, 4 and 5 at 50 mg/kg body weight showed activity of the same order as glibenclamide at 5 mg/ kg body weight. Fraction 4 was found to be the most active fraction in all the *in vitro* assays. In the DPPH radical quenching antioxidant assay it has a IC₅₀ value of 21.69 ± 0.31 mg/ml compared with gallic acid which had IC₅₀ value of 23.46 ± 0.43 mg/ml. In the superoxide anion radical scavenging assay it showed 98% percentage inhibition at 0.5 mg/ kg dose while quercetin showed 100% percentage inhibition. It has strong α - glucosidase inhibition activity with a IC₅₀ value of 0.40 ± 0.01 mg/ml compared with acarbose which had a IC₅₀ value of 0.54 ± 0.01 mg/mL. In the antiglycation assay it has a IC₅₀ value 0.44 \pm 0.01 mg/mL compared with rutin which had IC₅₀ value of 0.18 ± 0.02 mg/mL. In the anti-inflammatory assay it has IC₅₀ value of 16.9 \pm 0.1 mg/mL compared with rutin which had IC₅₀ value of 11.8 \pm 1.91 mg/mL. As the thin layer chromatography analysis of fractions 3 and 4 indicated that they had several compounds in common, they were combined and subjected to chromatographic analysis. Five compounds were isolated using MCI gel, sephadex LH-20 and silica column chromatography, preparative thin layer chromatography and normal phase, reversed phase and size exclusion preparative high-performance liquid chromatography and their structures elucidated by using ¹H NMR, ¹³C NMR, HSQC, HMBC, COSY, NOESY, IR and UV-visible spectroscopy, EI, FAB and HR-FAB spectrometry. One of the five compounds, 3,4,6-trihydroxy-7-ene-megastigman-9-one [104], was identified as the C5 epimer of lyratol E and is a new isomer. Of the four remaining compound 4-hydroxybenzoic acid [93] has been reported previously from the twigs of A. heterophyllus. The other remaining compounds 3,4-dihydroxy-7-enemegastigman-9-one [103], 13-Hydroxy-3-oxo- α -ionol [105], 3,4-dihydroxybenzoic acid [106] are known compounds but have not been reported previously from *A*. *heterophyllus*. This study indicates that the obtained hypoglycemic effect of the EA/W fraction is caused by the total effect of a number of compounds of similar structures and that it may not be possible to isolate a single highly active compound with hypoglyceamic activity from the senescent leaves of *A. heterophyllus*.

Key words: *Artocarpus heterophyllus*, hypoglycemic effect, antioxidant, antiglycation, alpha glucosidase inhibition, *epi*-lyratol E.