Evaluation of *Centella asiatica* morphotypes for high yeilding sources of Asiaticoside and optimizing conditions for higher yeilds of Asiaticoside

By

Thanthiriwaththage Dona Chathurika Kalpanie Dissanayake

Evaluation of *Centella asiatica* morphotypes for high yeilding sources of Asiaticoside and optimizing conditions for higher yeilds of Asiaticoside

By

Thanthiriwaththage Dona Chathurika Kalpanie Dissanayake

The work described in this thesis was carried out by me under the supervision of Prof. A. M. Abeysekera, Prof. (Mrs.) N. Salim, Prof. (Mrs.) U. G. Chandrika , Dr. (Mrs.) C. Padumadasa and a report on this has not been submitted in whole or in part to any university or any other institution for another Degree/Diploma

02/01/2019

Date

T. D. C. K. Dissanayake

Certification of approval

We hereby certify that the above statement made by the candidate is true and this thesis is suitable for submission to the University for the purpose of evaluation.

AMAheysehen

Prof. A. M. Abeysekera Department of chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura.

31/07/2017

date

nl

Prof. (Mrs.) N. Salim
Department of Botany,
Faculty of Applied Sciences,
University of Sri Jayewardenepura.

21/07/2019

date

hunde

1

Prof. (Mrs.) U. G. Chandrika Department of chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura.

02/01/2019

date

P. I Chapin

Dr. (Mrs.) C. Padumadasa Department of chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura

02/01/2019

date

We certify that all the corrections, additions and amendments have been done in accordance with the comments and suggestions made by the members of the viva – voice examination.

Al Aberyselin

2

Prof. A. M. Abeysekera Department of chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura.

15/03/2019

.

date

1. Sala

Prof. (Mrs.) N. Salim Department of Botany, Faculty of Applied Sciences, University of Sri Jayewardenepura.

21/3/2019

date

landst

1

Prof. (Mrs.) U. G. Chandrika Department of chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura.

02/01/2019

1.

date

P.J. ChyaiL

Dr. (Mrs.) C. Padumadasa Department of chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura

02/01/2019.

date

CONTENTS

LIST C)F ABBI	RIVIATIONS	
LIST C	OF TABI	LES	
LIST C)F FIGU	URES	
ACKN	OWLED	DGEMENTS	
ABSTE	RACT		
1. INT	RODUC	TION	01
2. LIT	ERATUI	RE REVIEW	
2.1.	Centell	a asiatica	04
	2.1.1.	Classification	04
	2.1.2.	Vernacular names	05
	2.1.3.	Morphology	06
	2.1.4.	Morphotypes	06
	2.1.5.	Geographical distribution	07
	2.1.6.	Habitat	07
	2.1.7.	Propagation	07
	2.1.8.	Chemical constituents	08
	2.1.9.	Bioactivity of C. asiatica	09
	2.1.10.	Utilization	10

2.2.	Asiaticoside		11
	2.2.1.	Extraction of asiaticoside from plant material	11
	2.2.2.	Separation of saponins in <i>C. asiatica</i> from	
		crude extracts of the plant	12
	2.2.3.	Quantification of saponins and asiaticoside	
		in extracts of C. asiatica	13
	2.2.4.	Biological activity of asiaticoside	14
2.3.	. Variation of chemical constituents of		
	C. asia	<i>tica</i> morphotypes	16
2.4.	Variati	ion of chemical constituents of plants	
	in resp	onse to environmental factors	18
2.5.	Effect	of different culture methods on <i>C. asiatica</i>	20

3. MATERIALS AND METHODS

	Materials and equipment		
3.1.	. Development and validation of an HPLC-UV		
	method for quantification of ASTC		
	3.1.1.	Defatting - Selection of a suitable solvent for defatting	22
	3.1.2.	Extraction	22
	3.1.3.	HPLC	22
	3.1.4.	Further optimization of HPLC method	23
	3.1.5.	Validation of extraction and quantification method	
	3.1.5.1.	Optimum ratio of plant material : solvent	
		and number of sequential extractions	23
	3.1.5.2.	Method of extraction	24
	3.1.6.	Determination of precision and accuracy	
	3.1.6.1.	Precession	25
	3.1.6.2.	Accuracy	25
3.2.	Constru	iction of the calibration curve	26

high ASTC producers	
3.3.1. Screening of <i>C. asiatica</i> morphotype	s grown in pots
3.3.1.1. Preparation of potting mixture	27
3.3.1.2. Preparation of Pots	27
3.3.1.3. Planting	27
3.3.1.4. Measurements and observations	28
3.3.1.5. Drying and grinding	28
3.3.1.6. Defatting	28
3.3.1.7. Extraction	29
3.3.1.8. HPLC	29
3.3.2. Screening of <i>C. asiatica</i> morphotype	s grown
in open field	
3.3.2.1. Growing plants	29
3.3.2.2. Measurements and observations	30
3.3.2.3. Analysis	30

3.3. Screening of *C. asiatica* morphotypes for

3.4.	Field experiment to investigate the effect of snade level,			
	fertilizer treatment and harvesting frequency			
	on biomass and ASTC yield 31			
	3.4.1. Selection of land	32		
	3.4.2. Manuaring	37		
	3.4.3. Planting	39		
	3.4.4. Harvesting and analysis	39		
	3.4.4.1. Determination of leaf area index (LAI)	40		
	3.4.4.2. Determination of ASTC content	40		
	3.4.4.3. Weed bio mass	40		
3.5.	Field experiment to optimize the plant spacing for			
	high biomass and ASTC yield	41		
3.6.	Attempted preparation of ASTC as a standard	43		
3.7.	Evaluation of microwave assisted			
	extraction of saponins from C. asiatica	44		
3.8.	Attempted aeroponics on C. asiatica	46		

3.4. Field experiment to investigate the effect of shade level,

4. RESULTS AND DISCUSSION

	4.1.	Development of an HPLC-UV method for	
		quantification of ASTC	47
	4.2.	Construction of the calibration curve	55
	4.3.	Screening of C. asiatica morphotypes for	
		high ASTC producers	58
	4.4.	Field experiment to investigate the effect of shade level,	
		fertilizer treatment and harvesting frequency	
		on biomass and ASTC yield	68
	4.5.	Field experiment to investigate the effect of	
		plant spacing on biomass and ASTC yield	75
	4.6.	Attempted preparation of ASTC as a standard	78
	4.7.	Evaluation of microwave assisted	
		extraction of saponins from C. asiatica	79
	4.8.	Attempted aeroponics on <i>C. asiatica</i>	81
5.	CON	ICLUSIONS	82
6.	REF	ERENCES	84
7.	APP	ENDICES	94

LIST OF ABBRIVIATIONS

ASTC	-	asiaticoside
HPLC	-	high performance liquid chromatography
TLC	-	thin layer chromatography
LDPE	-	low density poly ethylene
DoA	-	department of Agriculture – Sri Lanka
LAI	-	leaf area index

LIST OF TABLES

Table no		Page no
1	Combination of fertilizer provided to each plot at different stages B, T and H	38
2	Peak areas for ASTC at 210 nm obtained for different extraction methods	51
3	Peak areas for ASTC at 210 nm from HPLC analysis of six identical extracts of <i>C. asiatica</i>	52
4	Peak areas at 210 nm for solutions of standard ASTC with known concentration	57
5	Morphometric data at the time of harvesting and ASTC contents (mean \pm SD) of C. asiatica morphotypes, G1- G5 grown in pots and maintained in a greenhouse at 30 \pm 3 0 C for 75 days	62
6	Morphometric data and ASTC contents (mean ± SD) of <i>C. asiatica</i> morphotypes, G1- G5 grown in open field for	64
6	•	

7	ASTC contents (mean \pm SD) of <i>C. asiatica</i> morphotypes,	
	G1- G7 grown in field condition for 75 days	66
8	Biomass and ASTC yields of field-grown G3 under	
	different shade levels, fertilizer treatments and harvesting	
	frequency (Mean ± SE).	69
9	Effect of spacing in field-planting of <i>C. asiatica</i>	
	morphotype G 3 on biomass and ASTC yield (Mean ± SE;	
	n = 5).	75
10	Total saponin, ASTC and madacassoside yields obtained	
	by different methods of extraction	80

LIST OF FIGURES

Figure	Title	Page no.
no.		
1	Structure of asiaticoside, madacassoside and their aglycones, asiatic acid and madecassic acid	9
2	Plan of the field prepared to optimize the effect of shade level, fertilizer treatment and harvesting frequency on biomass and ASTC.	32
3	Distribution of different combinations of harvesting frequency (H) and fertilizer treatments (F) in replicate 1	34
4	Distribution of different combinations of harvesting frequency (H) and fertilizer treatments (F) in replicate 2	35
5	Distribution of different combinations of harvesting frequency (H) and fertilizer treatments (F) in replicate 3	36
6	Randomized spacing treatments, T1 – T5 in the five replicates, R1 – R5	41
7	A system designed for aeroponics	46
8	HPLC chromatograms	49
9	Callibration curve for standard ASTC at 210 nm for the concentration range of 0.01 to 5 mg/ml	56
10	C. asiatica morphotype G1	58

11	C. asiatica morphotype G2	59
12	C. asiatica morphotype G3	60
13	C. asiatica morphotype G4	60
14	C. asiatica morphotype G5	61

ACKNOWLEDGMENTS

I sincerely thank my supervisor, Prof. A. M. Abeysekera, Emeritus Professor at the Department of Chemistry, University of Sri Jayewardenepura for his encouragement, invaluable guidance and coordinating this project with Link Natural Products, Pvt. Ltd.

I sincerely thank my supervisor, Prof.(Mrs.) N. Salim, Senior Professor at the Department of Botany, University of Sri Jayewardenepura for her encouragement, invaluable guidance and granting the opportunity to carry out the research in the botanical garden and the greenhouse of the department of botany, as the Head of the Department.

I would like to express my sincere thanks to my supervisor, Prof.(Mrs.) U. G. Chandrika, Professor at the Department of Biochemistry, University of Sri Jayewardenepura for her support, guidance and giving the opportunity to use HPLC instrument for the quantitative analysis.

I would like to thank my supervisor, Dr.(Mrs.) C. Padumadasa, Senior Lecturer at the Department of Chemistry, University of Sri Jayewardenepura, for her assistance and guidance.

I would like to express my sincere gratitude to Prof. Subasinghe, Dean, Faculty of Agriculture, University of Ruhuna for guiding me in the agricultural component of the research and designing the field experiments.

I would like to thank Mr. Kumarasinghe, lecturer at Faculty of Agriculture, University of Ruhuna for performing the statistical analysis of the field experiments.

xii

I would like to thank Prof. S.I. Samarasinghe the former head of the Department of Chemistry, University of Sri Jayewardenepura and the current Prof. P. M. Jayaweera head at the Department of Chemistry, University of Sri Jayewardenepura for giving me the opportunity to carry out the research in Post Graduate research laboratory of the Department of Chemistry, University of Sri Jayewardenepura.

A special word of thanks is to Link Natural Products, Pvt. Ltd. for providing the financial support for the project.

I would like to express my sincere gratitude to Mr. Tennakoon, Manager, Division of Research and Development, Link Natural Products, Pvt. Ltd. for his invaluable guidance, support and providing the standard of asiaticoside.

I would like to thank Mr. Buddhisha, manager, Division of Agriculture, Link Natural Products, Pvt. Ltd. for providing the space and support to do field experiments.

I wish to thank all the academic and non – academic staff members of the Department of Chemistry, University of Sri Jayewardenepura and Department of Botany, University of Sri Jayewardenepura, for their cooperation.

I wish to thank all the staff members of the Division of Research and Development and the Division of Agriculture of Link Natural Products, Pvt. Ltd. for their support.

I would like to thank the staff members of the Faculty of Graduate studies for the kind co – operation given to me at all the times needed.

Finally I would sincerely thank my husband Mr. D. H. M. M. Dhananjaya for his encouragement and cooperation.

xiii

ABSTRACT

Centella asiatica (L) Urban, a herb native to South East Asian and African regions is used in many traditional medicinal systems. The bioactivities related to many of the traditional uses of the plant have been confirmed by modern scientific studies. Out of the most active major compounds in *C. asiatica*, asiaticoside has shown the best wound healing, anti-aging and scar removal properties, which has lead to the compound being used in cosmetic products.

Different morphotypes of *C.asiatica* have been identified from Sri Lanka as well as other countries such as India, South Africa and Madagascar. It has been reported that there is a variation in the asiaticoside content among the different morphotypes in India, South Africa and Madagascar. The variation in vitamin and mineral contents and susceptibility to root knot nematode infestation has been reported among Sri Lankan morphotypes. Identifying the morphotypes with high asiaticoside content and the agronomic conditions for their cultivation for optimum yields of asiaticoside is of industrial importance. This thesis reports the work carried out to find answers to these questions.

A convenient method of extraction and quantification of asiaticoside from *C. asiatica* plant material was developed and validated. Using the developed method the asiaticoside content of five different morphotypes were analyzed.

Defatting the dried plant material with chloroform and extracting with methanol provided a quantitative extract of asiaticoside, suitable for HPLC analysis. Reverse phase HPLC in isocratic mobile phase acetonitrile: water ratio at 30:70, 1 ml/min at 26 $^{\circ}$ C was a convenient method of quantification of asiaticoside in extracts. The method developed was precise (RSD = 1.7%) and accurate (99.8% recovery at an addition rate of 20 %), and convenient, to analyze a large number of field samples.

Out of the morphotypes tested, the morphotype, G 3 showed a significantly higher asiaticoside yield consistently $(2.70 \pm 0.25 \text{ in pot condition and } 1.12 \pm 0.45 \text{ and } 1.60 \pm 0.16$ in field condition). Therefore the effect of shade level, fertilizer treatment, harvesting frequency and plant spacing on biomass and asiaticoside yield in morphotype G3 were evaluated in factorially designed field trials,

The biomass and asiaticoside yield of G3 was higher in the shade level 30% when compared to 50% shade level. There was no significant difference in asiaticoside and biomass yields between the organic and inorganic fertilizer treatments recommended by the Department of Agriculture (DoA), Sri Lanka. a 1:1 mixture of these two resulted in lowering in biomass and asiaticoside yield. There was no significant difference in asiaticoside yield among the four different harvesting periods or among the five different spacing treatments tested. However difference in biomass yield was observed.