VARIATION OF NATURALLY AND ARTIFICIALLY INDUCED AGARWOOD RESIN CONTENT AND QUALITY OF *Gyrinops walla* FOR COMMERCIAL EXTRACTION AND ITS SEED GERMINATION

WATUTHANTIRIGE NILUKA HASINI DE ALWIS

M.Phil

2017

Variation of Naturally and Artificially Induced Agarwood Resin Content and Quality of *Gyrinops walla* for Commercial Extraction and its Nursery

Establishment

By

Watuthantirige Niluka Hasini de Alwis

Thesis submitted to the University of Sri Jayewardenepura for

the award of the Degree of Master of Philosophy in Forestry on

30th June 2017

DECLARATION

The work described in this thesis was carried out by me under the supervision of Dr. S.M.C.U.P. Subasinghe, Senior Lecturer, Department of Forestry and Environmental Science, University of Sri Jayewardenepura, Sri Lanka and Dr. D.S. Hettiarachchi, Research Scientist, Wescorp Group of Companies, 26, Coulson Way, Canning Vale, WA, Australia and a report on this has not been submitted in whole or in part to any university or any other institution for anther degree / diploma

undealuis W.N.H. de Alwis

Date: 28. 11. 2018.

CERTIFICATE OF APPROVAL

We certify that the above statement made by the candidate is true and this thesis is suitable for submission to the University for the purpose of evaluation.

Signature

Internal Supervisor Prof. S.M.C.U.P. Subasinghe Head, Department of Forestry and Environmental Science, University of Sri Jayewardenepura, Sri Lanka

Date

. 28/11/18

Signature

External Supervisor Dr. D.S. Hettiarachchi Research Scientist, Wescorp Group of Companies, 26, Coulson Way, Canning Vale, WA, Australia

. 22nd November 2018

Date

We certify that all the corrections, additions and amendments have been done in accordance with the comments and suggestions made by the members of the viva-voce examination.

Signature

lu

Internal Supervisor

Prof. S.M.C.U.P. Subasinghe

Head,

Department of Forestry and Environmental Science, University of Sri Jayewardenepura, Sri Lanka

Sti Lank

Date

. 28/11/18

Signature

0 Goog

External Supervisor Dr. D.S. Hettiarachchi Research Scientist, Wescorp Group of Companies, 26, Coulson Way, Canning Vale, WA, Australia

Date

. 22nd November 2018.

This thesis is dedicated

to

my loving husband

Tharindu

and

my beloved parents for their love, continued encouragement

and

tremendous support in every step that I make in my life...

TABLE OF CONTENTS

List of	f figures	5	vi
List of	f tables		ix
Ackno	owledge	ment	xi
Abstra	act		xiii
CHAI	PTER (DNE: INTRODUCTION	1
CILLI			,
-	PTER 1		
2.1	Gener	al characteristics of agarwood	6
	2.1.1	History of agarwood	7
2.2	Comm	nercial uses of agarwood	8
	2.2.1	Aroma production by burning	8
	2.2.2	Traditional medicine	9
	2.2.3	Perfume	10
	2.2.4	Incense sticks	10
	2.2.5	Food commodities	11
	2.2.6	Other uses	12
2.3	Agarw	vood resin forming genera	13
	2.3.1	Aquilaria	13
	2.3.2	Gonystylus	19
	2.3.3	Aetoxylon	20
	2.3.4	Gyrinops	20
2.4	Gyrine	ops walla	21
	2.4.1	Botanical description	21
	2.4.2	Distribution	23
2.5	Chemi	stry of agarwood	25
	2.5.1	Properties of essential oil	25
	2.5.2	Physical properties	25
	2.5.3	Chemical properties	25

2.6	Agarwood resin formation	26
2.7	Agarwood resin induction	28
	2.7.1 Debarking	29
	2.7.2 Drilling	30
	2.7.3 Nailing	31
	2.7.4 Aeration	32
	2.7.5 Biological inoculation	33
	2.7.6 Coppicing	34
	2.7.7 Chemical methods	35
2.8	Agarwood resin extraction methods	36
	2.8.1 Hydro-distillation	37
	2.8.2 Steam distillation	40
	2.8.3 Solvent extraction	41
	2.8.4 Supercritical fluid carbon dioxide extraction	41
2.9	Resin content variation	42
2.10	Volatile components of agarwood resin	43
2.11	Agarwood oil analysis techniques	46
	2.11.1 Electronic nose	46
	2.11.2 Gas chromatography methods	47
	2.11.3 Solid phase micro extraction (SPME)	49
2.12	Grading of agarwood resins	50
2.13	Agarwood seed germination, nursery establishment and operations	54
	2.13.1 Viability and germination of seeds	54
	2.13.2 Seed storage	57
	2.13.3 Nursery establishment	60
	2.13.4 Nursery operations	61
	2.13.5 Seed dormancy	66
	2.13.6 Seed pre-treatment	69

CHAI	PTER 1	THREE: MATERIALS AND METHODS	73
3.1	Identi	fy agarwood resin content (w/w) and quality between G. walla trees and	
	betwe	en different geographical regions	73
	3.1.1	Sampling and data collection	73
	3.1.2	Tree and geographical measurements	74
	3.1.3	Determination of resin content	75
	3.1.4	Determination of resin constituents	77
3.2	Identi	fy relationships between resin content and constituents with tree	
	param	eters	78
3.3	Identi	fy most suitable traditional agarwood resin inducement methods by	
	compa	aring resin content and quality	78
	3.3.1	Study area	78
	3.3.2	Traditional inoculation methods used	78
	3.3.3	Inoculation methods	80
	3.3.4	Observations made and tissue sample collection	81
	3.3.5	Determination of resin content and its constituents of agarwood resins	
		formed due to traditional inoculation methods	82
3.4	Identi	fy Gyrinops walla seed germination with different storage time	82
	3.4.1	Seed collection and storage	82
	3.4.2	Preparation of germination beds and seed sowing	83
	3.4.3	Determination of germination percentage	84
	3.4.4	Statistical Analysis	85
3.5	Identif	fy Gyrinops walla seed germination with different treatments	85
	3.5.1	Seed collection, storage and treatments	85
	3.5.2	Statistical Analysis	86
3.6	Identi	fy the optimum soaking method and hydro-distillation time for resin	
	extrac	tion	86
	3.6.1	Sample collection and preparation	86
	3.6.2	Determination of the optimum tissue mass: water ratio and soaking time	87
	3.6.3	Determination of the optimum distillation time period	88
	3.6.4	Determination of resin content and its constituents	89

CHAI	PTER I	FOUR: RESULTS	90
4.1	Identi	fy agarwood resin content (w/w) and quality between G. walla trees and	
	betwee	en different geographical regions	90
	4.1.1	Variation of <i>Gyrinops walla</i> tree parameters	90
	4.1.2	Variation of agarwood resin contents	91
	4.1.3	Variations of tissue colours and extracted resin colours	92
	4.1.4	Variation of resin constituents	93
4.2	Identi	fy relationships between resin content and constituents with tree	
	param	eters	98
	4.2.1	Correlation of resin content with tree parameters	98
	4.2.2	Correlation of resin constituents with tree parameters and resin content	98
4.3	Impac	ts of traditional agarwood resin induction methods	101
	4.3.1	Variation of resin contents, tissue and resin colours due to different	
		traditional methods	101
	4.3.2	Variation of resin constituents due to different traditional methods	103
4.4	Identif	by Gyrinops walla seed germination with different storage time	109
	4.4.1	Seed characteristics	109
	4.4.2	Effect of storage conditions and storage period on seed germination	
		percentage	109
4.5	Identif	Ty Gyrinops walla seed germination with different treatments	113
	4.5.1	Seed characteristics	113
	4.5.2	Effect of storage conditions and pre-sowing treatments	113
4.6	Identi	fy the optimum soaking method and hydro-distillation time for resin	
	extrac	tion	118
	4.6.1	Variation of colours of agarwood resins extracted by	
		hydro-distillation	118
	4.6.2	Variation of resin contents extracted with different soaking times and	
		tissue mass: water ratios	118
	4.6.3	Variation of hydro-distilled resin volume in different distillation time	
		periods	119
	4.6.4	Variation of resin constituents in different soaking distillation	
		experiments	120

CHA	PTER 1	FIVE: DISCUSSION 12	28
5.1	Identi	fy resin agarwood quantity and quality of G. walla growing in different	
	locatio	ons 12	29
	5.1.1	Variation of <i>Gyrinops walla</i> tree parameters	29
	5.1.2	Variation of resin contents	29
	5.1.3	Variations of tissue colours and extracted resin colours	30
	5.1.4	Variation of resin constituents	32
5.2	Identi	fy relationships between resin content and constituents with tree	
	param	eters	34
5.3	Identi	fy most suitable traditional agarwood resin induction method 13	35
	5.3.1	Variation of resin contents, tissue colours and resin colours between	
		different traditional methods	35
	5.3.2	Variation of resin constituents of agarwood resin formed due to	
		different traditional methods	37
5.4	Identi	fy <i>Gyrinops walla</i> seed germination with seed storage time	39
5.5	Identi	fy <i>Gyrinops walla</i> seed germination with different treatments	10
5.6	Identi	fy the optimum soaking method and hydro-distillation time for resin	
	extrac	tion	12
	5.6.1	Variation of agarwood resin contents after different soaking times and	
		tissue mass: water ratios	12
	5.6.2	Variation of colours of agarwood resins extracted by	
		hydro-distillation	13
	5.6.3	Variation of agarwood resin volumes in different	
		hydro-distillation time periods	14
	5.6.4	Variation of resin constituents in hydro-distillation	14
CHA	PTER S	SIX: CONCLUSIONS 14	16
CHA	PTER S	SEVEN: RECOMMENDATIONS 14	19
REFI	ERENC	ES 15	51
ANN	EXES		72

LIST OF FIGURES

Figure 2.1:	Illustrative map of global distribution of agarwood forming species	15
Figure 2.2:	Capsule and seeds of five commonly cultivated Aquilaria species	18
Figure 2.3:	Botanical features of Gyrinops walla	23
Figure 2.4:	Distribution of <i>G. walla</i> in Sri Lanka	24
Figure 2.5:	Debarking of a tree stem	29
Figure 2.6:	Drilling the tree stem	30
Figure 2.7:	Nails inserting spirally in a tree trunk	31
Figure 2.8:	Plastic tubes inserted as aeration device to induce agarwood	32
Figure 2.9:	Application of the fungal inoculation technology on an	
	agarwood producing tree at a community forest	34
Figure 2.10:	Hydro distillation process in extracting agarwood resin	38
Figure 2.11:	Boiler operated steam distillation unit	40
Figure 2.12:	Skeleton of hydrocarbons found in volatile agarwood resin	44
Figure 2.13:	Skeleton of oxygenated sesquiterpenes found in agarwood resin	44
Figure 2.14:	Different types of agarwood pieces and its imitation	50
Figure 2.15:	Broadcasting of rice seeds	63
Figure 2.16:	Hand dibbling of seeds	64
Figure 2.17:	Seed drill	65
Figure 2.18:	Key to seed dormancy types	68
Figure 3.1:	Extracting the dark colour tissues using chisel and hammer	74
Figure 3.2:	Size reduced, oven dried resinous tissues	75
Figure 3.3:	Apparatus of the solvent extraction method	76
Figure 3.4:	Filtering the extraction to the amber colour vial	76
Figure 3.5:	Extracted natural resin	76

Figure 3.6:	DANI GC 1000 [®] Gas Chromatography Instrument with	
	HT3000A [®] Auto Sampler	77
Figure 3.7:	Study areas where sample collected	79
Figure 3.8:	Traditional inoculation methods tested for <i>G. walla</i>	80
Figure 3.9:	Inoculation pattern in a tree stem	81
Figure 3.10:	Sampling technique	81
Figure 3.11:	G. walla seeds separate for each treatment	82
Figure 3.12:	Measuring seed diameter by vernier caliper	83
Figure 3.13:	Seeds sown in the sand bed	84
Figure 3.14:	Watering to the germination beds	84
Figure 3.15:	Mixing of pulverized tissues to obtain an even sample	87
Figure 3.16:	Grounded tissue particles were soaked in water	88
Figure 3.17:	Hydro distillation apparatus	89
Figure 4.1:	Distribution of average resin content % (± SE)	91
Figure 4.2:	Gas chromatographic fingerprint of G. walla extract from	
	Maliboda, MB-04 sample	94
Figure 4.3:	Gas chromatographic fingerprint of G. walla extract from	
	Neboda, NB-10 sample	94
Figure 4.4:	Composition of major sesquiterpenes, fatty acids	
	and 2-(2-phenylethyl) chromones (+ SE)	97
Figure 4.5:	Average resin content variation at the inoculation point,	
	at 10 cm above and 10 cm below (+ SE)	103
Figure 4.6:	Gas chromatographic fingerprint of agarwood resins	
C	inoculated with NaCl	105
Figure 4.7:	Gas chromatographic fingerprint of agarwood resins	
C	inoculated with iron nails	105
Figure 4.8:	Variations of major resin constituents present in agarwood	
	resins after traditional inoculations (+ SE)	108
Figure 4.9:	Effect of G. walla seeds storage conditions and storage	
-	period on seed germination percentage after 16 weeks	110

Figure 4.10:	Seed germination by the direct sowing method	111
Figure 4.11:	Seed storage vs. germination test trial	111
Figure 4.12:	Effect of storage temperature and storage period on seed	
	cumulative germination percentage of <i>G. walla</i> seeds	112
Figure 4.13:	Effect of seed treatments after two weeks storage of	
	G. walla seeds	114
Figure 4.14:	Effect of seed treatments with six weeks storage	115
Figure 4.15:	Control of the seed treatment vs. germination test trial	116
Figure 4.16:	Seeds germinated in 0.1% citric acid treatment after	
	six months storage	116
Figure 4.17:	Effect of pre-sowing treatment, storage temperature and	
	storage period on seed germination percentage of G. walla seeds	117
Figure 4.18:	Distribution of average resin content percentages (w/w)	
	between soaking time	119
Figure 4.19:	Gas chromatographic fingerprints of a G. walla hydro-distilled	
	resin sample soaked for seven days at 1:15 tissue:water ratio	125
Figure 4.20:	Gas chromatographic fingerprints of a G. walla hydro-distilled	
	resin sample soaked for nine days at 1:20 tissue: water ratio	126
Figure 4.21:	Composition of major resin constituents identified in	
	hydro-distilled resin samples of G. walla tissues under	
	different soaking-distillation methods (+SE)	127

LIST OF TABLES

Table 2.1:	Accepted names, distribution, and conservation status of	
	Aquilaria species	16
Table 2.2:	Vegetative and reproductive characteristics of cultivated	
	Aquilaria species	17
Table 2.3:	Commonly used agarwood grades found in the Malaysian market	52
Table 3.1:	Location description of the samples collected	73
Table 3.2:	Parameters assessed and instruments used for the sampled trees	74
Table 3.3:	Optimum soaking and distillation plan	88
Table 4.1:	Summary of the mean values of tree parameters (± SE)	90
Table 4.2:	Variations of tissue colour and resin colour with Munsell	
	colour codes	92
Table 4.3:	Variation of resin constituents identified in G. walla trees of	
	Selected populations	95
Table 4.4:	Summary of the correlation test of resin contents with tree	
	parameters at 95% probability level	98
Table 4.5:	Correlations of resin content and constituents	100
Table 4.6:	Variations of resin content, resinous tissue colour and extracted	
	resin colour with Munsell colour codes	101
Table 4.7:	Summary of GLM ANOVA test of resin content with inoculation	
	treatment, sample collection point and their interaction	102
Table 4.8:	Variation of resin constituents in agarwood resins formed	
	due to different traditional methods	106
Table 4.9:	Effect of storage temperature, storage periods and their	
	interaction on seed germination in G. walla	109
Table 4.10:	Effect of storage temperature, storage duration, sowing	
	treatments and their interaction on seed germination in G. walla	113
Table 4.11:	Variations of hydro-distilled resin colours with Munsell	
	colour codes	118

Table 4.12:	Hydro-distilled resin volume variation in each treatment in	
	different distillation time periods	120
Table 4.13:	Composition variation of constituents identified in G. walla	
	hydro-distilled resin samples	123
Table 4.14:	Effect of resin constituents, soaking time periods, tissue:water	
	ratios and their interaction on hydro-distillation treatments in G. walla	122

ACKNOWLEDGEMENT

Firstly, I would like to express my sincere gratitude to my Supervisor Prof. S.M.C.U.P. Subasinghe, Head, Department of Forestry and Environmental Science, University of Sri Jayewardenepura for the continuous support and advice to complete this study. I also deeply appreciate the valuable guidance and knowledge given by my External Supervisor, Dr. D.S. Hettiarachchi, Research Scientist, Wescorp Group of Companies, Australia to complete the study.

This study would not have been possible without the financial support of the National Research Council of Sri Lanka and Sadaharitha Plantations Limited under the Public-Private-Partnership Program (PPP 12-57). My sincere thanks also goes to Mr. Sathis Nawarathne, Chairman of Sadaharitha Plantations Limited, for providing me an opportunity to conduct this study as a Research & Development Executive, and for providing nursery facilities for seed experiments.

I gratefully acknowledge Dr. Prashanthi Gunawardene, and Prof. Nilanthi Bandara, Former Heads of the Department of Forestry & Environmental Science for allowing me to use the laboratory facilities in the Department. Thanks are also extended to Dr. Asitha Cooray, Coordinator of the Central Instrumental Facility of Faculty of Applied Sciences, University of Sri Jayewardenepura for providing access to the GC-MS facilities.

My thanks are also extended to Mr. Chathura Karunathunga, Manager of the Agarwood Project, Mr. Janath Erandaka, Forestry Manager, Mr. Kanchana Waduge, Assistant Manager of the Agarwood Nursery, Sadaharitha Plantations for supporting my study in numerous ways by providing transport, labour facilities and *G. walla* seed samples.

I also take this opportunity to express my gratitude to Mr. I.D. Wijesinghe, Mr. S. Weththasinghe, Senior Technical Officers of Department of Forestry and Environmental Science, University of Sri Jayewardenepura, Mr. G.D. Nishantha, Caretaker of Yagirala Forest Reserve and all other non-academic staff members of the Department of Forestry and Environmental Science for their support rendered in many ways to complete this research project in successful manner. I am also thankful to Mr. K.S. Wijenayake, Senior Technical Officer, Department of Zoology and Mrs. R.M. Munasinghe, Technical Officer of Central Instrumental Facility for their support.

Special thanks are also extended to Ms. H.I.D. Hitihamu, Ms. Upekha Mandakini, Ms. K.P. Millaniayage, Mr. C.I. Deshapriya, Ms. S.A.Y. Medhavi, Ms. A.A.P. Dias, Ms. S. Vithanage and Ms. A.N.G.C.K. Vidurangi and all my friends supported me in numerous ways to complete this study.

Last but not least I would like to thank my parents, my husband and my family for their continuous encouragement and support given throughout to complete this research successfully.

VARIATION OF NATURALLY AND ARTIFICIALLY INDUCED AGARWOOD RESIN CONTENT AND QUALITY OF *Gyrinops walla* FOR COMMERCIAL EXTRACTION AND ITS SEED GERMINATION

WATUTHANTIRIGE NILUKA HASINI DE ALWIS

ABSTRACT

Gyrinops walla, a member of the family Thymelaeaceae produces a valuable resin called agarwood which is used for religious, cultural and medicinal purposes in many countries. Agarwood is formed as a result of a self-defense mechanism towards a stress caused by several factors which can be physical, chemical and biological. The ability of agarwood production in *G. walla* was discovered in 2012 and adequate information is still lacking on plantation establishment, agarwood inducement and resin extraction for this species. Therefore the present study was conducted to identify: the variation of the contents and qualities of the agarwood resins formed due to natural causes in *G. walla*; most effective low cost traditional agarwood resin inducement methods; the process of nursery establishment based on the seed storage and presowing treatments; and the best agarwood resin extraction process by further developing hydrodistillation process.

150 *G. walla* trees growing naturally in nine different geographical locations of wet zone, Sri Lanka: viz., Horawala, Kalatuwawa, Karandana, Maliboda, Neboda, Yagirala, Mirigama, Kalawana and Suriyakanda, were selected for the present study. *G. walla* trees growing in the selected areas were carefully observed for the stem damages and wounds. Collected agarwood resinous tissues of the damaged areas in non-destructive manner were size reduced and the resins extraction was done using solvent extraction method. Resin constituent analysis was done using GC-FID method. Pearson correlation was done to identify the relationships between naturally produced resin content and constituents with tree diameter and total height. Seven types of traditional inoculation methods were tested with healthy non-infected G. walla trees growing in Kalawana and Mathugama Divisional Secretariat Divisions to identify the most effective inoculation method. Agarwood formed tissues were collected after 12 months of inoculation and resinous tissues were extracted by solvent extraction and constituent analysis was done by GC-FID method. Fresh, healthy G. walla seeds were collected from Mathugama Divisional Secretariat Division to identify the potential of storage. Seeds were stored in three temperature levels viz., room temperature, 8° C and (-)10° C and six storage durations up to six weeks. Stored seeds were sown at weekly intervals and direct sowing was done without storing as the control. Six types of pre-treatments with controls were also tested in the present study. Five methods were used for this purpose for G. walla seeds stored at three temperature levels, viz., room temperature, 8° C and (- 10° C for two storage durations, viz., two and six weeks. In order to identify optimum conditions to extract agarwood by hydro-distillation, agarwood formed tissues were separated from G. walla trees of Mirigama Divisional Secretariat Division. These tissues were size reduced to 5-10 mm and mixed evenly to obtain a uniform sample. Two tissue mass to water ratios (1:15 and 1:20) with six soaking days (3, 5, 7, 9, 11, 13) were tested for this experiment. Based on a pre-test, hydro-distillation was continued to 72 hours, while taking resin volume measurements at 24 hour interval. Resin constituents were identified using GC-FID method.

Average resin content of the naturally formed agarwood was varied from 2.19% to 4.92%, however it was not significantly different between selected nine locations, although higher resin content variations were found within and between populations. 21 different constituents were identified in naturally formed agarwood resins of *G. walla* which belonged to seven classes, viz., vetispirane, selinene, cardinane, guaiene, eremophilane, 2-(2-phenyl)-chromone and fatty acids. It was not possible to build mathematical relationships between resin content and resin constituents with tree parameters as resin content and most constituents were not significantly correlated with tree diameter and height. A significant difference (*F*=5.50; *p*=0.000) was found of

resin contents between different tested traditional inoculation methods. Among these methods, the highest average resin content ($4.38\% \pm 0.41$) was recorded from the trees inoculated with sodium chloride. In the traditionally induced agarwood resins of *G. walla*, 28 different constituents of nine classes were identified. Trees inoculated with sodium chloride showed the most important resin constituents, viz., phenyl butanone, agarofuran, agarospirol, guaienes, eremophilanes, valencane and phenyl chromone derivatives.

Most *G. walla* seeds started their germination within one to two weeks after sowing. Direct sowing method showed the highest germination percentage (73.3%), while seeds stored at 8° C for two and four weeks showed the second highest germination percentage (26.7%). The results confirmed that *G. walla* seeds are sensitive to the desiccation and therefore cannot be stored for a long period. Results of the pre-sowing treatment showed the highest germination (46.7%) was recorded from the control, viz., direct sowing without storage and pre-treatment which was followed by 40.0% of germination after treating with 0.05% gibberellic acid after two weeks of storage at room temperature.

Optimum conditions to extract agarwood by hydro-distillation were soaking tissues for nine days in 1:20 tissue to water ratio, distilled for 72 hours continuously, which gave the highest average resin content of 0.057%. 21 different constituents with six classes of sesquiterpenes, fatty acid and 2-(2-phenylethyl)-chromone derivatives were found in agarwood resins of *G. walla* extracted by hydro-distillation. Agarospirol and agarofuran were present in all agarwood resins of hydro-distilled samples.

According to the findings, the Maliboda population had the highest average resin content, where Suriyakanda population had the highest agarospirol content. The seeds of *G. walla* were found to be recalcitrant.