Occurrence of heavy metal contamination and *in vitro* bioaccessibilitiy of heavy metals in selected green leafy vegetables (GLV) obtained from Colombo District

by

Thilini Chathurangi Kananke

Ph.D.

2016

Occurrence of heavy metal contamination and *in vitro* bioaccessibilitiy of heavy metals in selected green leafy vegetables (GLV) obtained from Colombo District

by

Thilini Chathurangi Kananke

Thesis submitted to the University of Sri Jayewardenepura for the award of the Degree of Doctor of Philosophy in Food Science and Technology on 26th October 2016

Occurrence of heavy metal contamination and *in vitro* bioaccessibilitiy of heavy metals in selected green leafy vegetables (GLV) obtained from Colombo District

by

Thilini Chathurangi Kananke

Thesis submitted to the University of Sri Jayewardenepura for the award of the Degree of Doctor of Philosophy in Food Science and Technology on 26th October 2016

Certification of Supervisors

We certify that the candidate has incorporated all corrections, additions and amendments recommended by the examiners to the final version of the PhD thesis.

Internal Supervisor

Dr. M.A. Jagath Wansapala Head / Senior Lecturer Department of Food Science and Technology Faculty of Applied Sciences University of Sri Jayewardenepura Signature: $N \land A$

External Supervisor

Prof. D.M. Anil Gunaratne Department of Livestock Production Faculty of Agriculture Sabaragamuwa University of Sri Lanka Signature: My Date: 06/06/2017

Declaration of student

The work described in this thesis was carried out by me under the supervision of Dr. M.A. Jagath Wansapala and Professor D.M. Anil Gunaratne and a report on this has not been submitted in whole or in part to any university or any other institution for another Degree / Diploma.

Comber.

Signature of the candidate

06/06/2017

Date

Declaration of Supervisors

We certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the University for the purpose of evaluation.

Internal Supervisor

Dr. M.A. Jagath Wansapala Head / Senior Lecturer Department of Food Science and Technology Faculty of Applied Sciences University of Sri Jayewardenepura Signature: MAI Jan Jan Date: DA / OS Jasp

External Supervisor

Prof. D.M. Anil Gunaratne Department of Livestock Production Faculty of Agriculture Sabaragamuwa University of Sri Lanka

Date: 06/06/2017

Table of Contents

Table of contents	i
Abbreviations	ix
Acknowledgement	xi
Abstract	xii
Chapter 01. Introduction	1
Objectives	5
Chapter 02. Literature Review	7
2.1 Heavy metals in the environment	7
2.2 Heavy metals and their effects on human health	8
2.3 Routes of heavy metal exposure	
2.4 Classifications of heavy metal exposure	10
2.5 Heavy metals, sources and their toxicity	12
2.5.1 Copper	
2.5.2 Cadmium	13
2.5.3 Lead	14
2.5.4 Chromium	
2.5.5 Nickel	16
2.5.6 Mercury	17
2.5.7 Arsenic	18
2.6 Occurrence of toxic elements in foodstuffs	
2.7 Green leafy vegetables used for the study	20
2.8 Mobility and bioavailability of metals in soil	
2.8.1 Effect of soil properties on the bioavailability of metals	
2.9 Bioaccumulation of heavy metals in plants	
2.9.1 Mechanism of heavy metal uptake by plants	
2.10 Oral Bioaccessibility of heavy metals	
2.10.1 In vitro bioaccessibility method	
2.10.2 Assessing Bioaccessibility	
2.10.3 Validity of the methods used for bioaccessibility studies	
2.11. Analytical procedures for measuring heavy metal concentrations	
2.11.1 The atom and atomic spectroscopy	

2.11.2 Quantitative analysis by atomic absorption	39
2.11.3 The atomic absorption instrumentation	42
2.11.4 Interferences in atomic absorption spectroscopy	43
2.11.4.1 Non-spectral interferences	44
2.11.4.2 Spectral interferences	45
2.11.5 Flame Atomic Absorption Spectroscopy (FAAS)	46
2.11.6 Graphite Furnace Atomic Absorption Spectroscopy (GFAAS)	46
2.11.7 Inductively Coupled Plasma (ICP) Emission	47
Chapter 03. Materials and Methods	49
3.1 Preliminary Inspection Survey	49
3.2 Selection of Sampling Sites	49
3.2.1 Study area	50
3.2.2 Area description	50
3.3 Green leafy vegetables used for the study	52
3.4 Cultivation of reference green leafy vegetables	53
3.5 Determination of heavy metals concentrations in water, soil and green leafy	
vegetable samples obtained from the control site and from different fields locate	ed in
Colombo area	54
3.5.1 Analysis of irrigation water	54
3.5.2 Soil sample collection and analysis	57
3.5.2.1 Soil pH	57
3.5.2.2 Soil organic matter content	58
3.5.2.3 Determination of heavy metals in soil samples	58
3.5.3 Green leafy vegetable sampling and analysis	61
3.5.4 Comparison of heavy metal concentrations in field samples with reference samples	
3.6 Determination of heavy metal concentrations in green leafy vegetable samples	
collected from different market sites in and around Colombo District	65
3.6.1 Sample collection and analysis	65
3.7 Estimation of heavy metal concentrations of roadside farmland soil and green le	
vegetables cultivated in and around Colombo area	
3.7.1 Sampling procedure	
3.7.2 Sample preparation and analysis	
3.8 Determination of heavy metal in fertilizers and animal manure used for GLV	

cultivation	. 68
3.8.1 Collection of fertilizer and animal manure	. 68
3.8.2 Treatment of samples and analysis for heavy metals	. 69
3.9 Estimation of bioaccumulation, translocation and distribution patterns of heavy	
metals in green leafy vegetables	. 70
3.9.1 Sample collection	. 71
3.9.2 Sample preparation and analysis	. 71
3.9.3 Calculation of Soil-to-plant transfer factor of heavy metals	. 72
3.9.4 Calculation of Mobility Index (MI) of heavy metals in each plant level of	
green leafy vegetables	. 73
3.10 Estimation of effect of different food processing techniques on the heavy metal	
concentrations of selected green leafy vegetable species	. 73
3.10.1 Sample collection	. 73
3.10.2 Sample preparation for different processing methods	. 74
3.10.3 Estimation of heavy metals in processed samples	. 75
3.11 In vitro assessment of heavy metals in green leafy vegetables	. 76
3.11.1 Chemicals and Apparatus	. 76
3.11.2 Sample collection	. 76
3.11.3 Procedure	. 77
3.12 Daily intakes of heavy metals from GLV	78
3.13 Data Analysis	. 78
3.14 Quality Assurance	79
Chapter 04. Results and Discussion	. 80
4.1 Heavy metals concentrations in soil, water and green leafy vegetable samples	
obtained from the control site and from different fields located in Colombo arean	ı 80
4.1.1 Heavy metal contamination in studied soils	. 80
4.1.2 Heavy metal contamination in irrigation water sources	. 84
4.1.3 Heavy metal contamination of GLV	. 85
4.1.4 Relationship between the soil properties and heavy metal concentrations in	
green leafy vegetables	.95
4.2 Heavy metal contamination of GLV collected from market sites	
4.2.1 Comparison of heavy metal levels in GLV between production and market	
sites	106

4.2.3 Influence of different types of marketing handling techniques on heavy	y metal
concentrations of GLV	113
4.3 The effect of cooking methods in reducing heavy metal concentrations in Gl	LV114
4.4 Heavy metal concentrations of roadside farmland soil and green leafy vegeta	ables
cultivated in and around Colombo area	120
4.5 Heavy metal in fertilizers and animal manure used for GLV cultivation	131
4.6 Bioaccumulation, translocation and distribution patterns of heavy metals in a	green
leafy vegetables	133
4.6.1 Heavy metal distribution pattern in GLV	133
4.6.2 Accumulation and Translocation factors of heavy metals in GLV	138
4.6.3 Mobility index (MI) or translocation factor (TF) of heavy metals in GI	LV . 145
4.7 In vitro bioaccessibility of heavy metals in green leafy vegetables	148
4.8 Daily intakes of heavy metals from GLV	164
Chapter 05. Conclusions	166
References	169
Annex I	203
Annex II	

List of Tables

Table 2.1 Relative bioavailability / mobility of metals	24
Table 3.1 Green leafy vegetables collected from field and market sites	61
Table 3.2 Types of GLV cultivated at the selected sites	67
Table 3.3 The type of cooking method applied for each GLV	74
Table 4.1 Descriptive statistics of heavy metal contents in soil samples obtained	
from different cultivation areas	82
Table 4.2 Heavy metal concentrations of irrigation water samples obtained from	
different cultivation areas	85
Table 4.3 Heavy metal contents in green leafy vegetables cultivated in control site	85
Table 4.4 Heavy metal concentrations of GLV samples obtained from	
cultivation areas	87
Table 4.5 Heavy metal content of GLV collected from market sites	101
Table 4.6 Percentage increments of heavy metals in marketed GLV	111
Table 4.7 Average concentrations of heavy metals detected in processed GLV	116
Table 4.8 Previous research studies regarding the effect of processing methods	
on heave metal contents of foodstuffs	118
Table 4.9 Heavy metal concentrations of soil in GLV farmlands at different	
distances from the roadsides	121
Table 4.10 Heavy metal concentrations in GLV at different distances	123
Table 4.11 Previous studies of heavy-metal distribution patterns in roadside soils	
and plants	130
Table 4.12 Average heavy metal concentrations (mg kg ⁻¹) in animal manures and	
fertilizers.	132
Table 4.13 Mean heavy metals concentrations (mg kg ⁻¹) in different plant parts of	
GLV	134
Table 4.14 Mean heavy metal concentrations (mg kg ⁻¹) in soils from different	
areas	140

Table 4.15 Accumulation and Translocation Factors of GLV from different	
cultivation sites	142
Table 4.16 Bioaccessibility of heavy metals in raw and processed Mukunuwenna	
samples at the gastric and intestinal phases	153
Table 4.17 Bioaccessibility of heavy metals in raw and processed Nivithi samples	
at the gastric and intestinal phases	154
Table 4.18 Bioaccessibility of heavy metals in raw and processed Thampala	
samples at the gastric and intestinal phases	155
Table 4.19 Bioaccessibility of heavy metals in raw and processed Kankun samples	
at the gastric and intestinal phases	156
Table 4.20 Bioaccessibility of heavy metals in raw and processed Kohila samples	
at the gastric and intestinal phases	157
Table 4.21 Estimated daily intakes of heavy metal through consumption of GLV	164

List of Figures

Figure 2.1 Major processes which affect the partitioning of metals between	
solid and liquid phases of soil	25
Figure 2.2 The path of aqueous solution into roots	30
Figure 2.3 Energy Transitions	38
Figure 2.4 The atomic absorption process	38
Figure 2.5 The atomic absorption process	39
Figure 2.6 Concentration vs. Absorbance	40
Figure 2.7 AA measurements near detection limit	41
Figure 2.8 Basic requirements for a spectrometer	42
Figure 2.9 Basic AA Spectrometer	42
Figure 2.10 The basic design of the ICP-AES instrument	48
Figure 3.1 Locations selected for the study	50
Figure 3.2 Green leafy vegetable cultivation sites in and around Colombo District	52
Figure 3.3 Types of GLV collected from the cultivation sites	
(a) Mukunuwenna (b) Nivithi (c) Thampala (d) Kankun (e) Kohila leaves	53
Figure 3.4 Reference green leafy vegetable plots in unpolluted experimental area	
[(a) Thampala, (b) Nivithi, (c) Mukunuwenna, (d) Kankun, (e) Kohila]	54
Figure 3.5 Irrigation sources used for green leafy vegetable cultivation	55
Figure 4.1 Mean concentrations of Ni found in GLV collected from different areas	88
Figure 4.2 Mean concentrations of Cu found in GLV collected from different areas 88	
Figure 4.3 Mean concentrations of Cd found in GLV collected from different areas 89	
Figure 4.4 Mean concentrations of Cr found in GLV collected from different areas	89
Figure 4.5 Mean concentrations of Pb found in GLV collected from different areas	90
Figure 4.6 Production sites located in Kolonnawa and Wellampitiya areas and	
probable sources of heavy metals	92
Figure 4.5 Mean concentrations of Pb found in GLV collected from different areas Figure 4.6 Production sites located in Kolonnawa and Wellampitiya areas and	90

Figure 4.7 Correlation Matrix between soil parameters and heavy metals con	tents
in GLV	96
Figure 4.8 Heavy metal concentrations of GLV obtained from open market a	nd
production sites	106
Figure 4.9 Comparison of (a) Ni, (b) Cd, (c) Cr, (d) Pb and (e) Cu concentrat	ions
of GLV obtained from the production and market sites	107-109
Figure 4.10 GLV marketing sites in Pettah Manning market	110
Figure 4.11 Heavy metal concentrations in GLV sold by different marketing	
methods	113
Figure 4.12 Soil heavy metal concentrations with the distance	125
Figure 4.13 Heavy metal concentrations in GLV with distance	126
Figure 4.14 Heavy metal accumulation factors in different GLV.	143
Figure 4.15 Translocation factors of heavy metals from (a) Soil to Root, (b)	
Root to Stem and (c) Stem to Leaves in different GLV	143- 144
Figure 4.16 Bio-accessibility (%) of heavy metals in raw, cooked and stir-frie	ed
GLV at the gastric and intestinal phases.	158-159

Abbreviations

AAS	Atomic Absorption Spectroscopy
ANOVA	Analysis of Variance
AOAC	Association of Official Analytical Chemists
APHA	American Public Health Association
A.R.	Analytical Reagent
ATSDR	Agency for Toxic Substances and Disease Registry
BAC	Bio Accumulation Factor
CEC	Cation Exchange Capacity
DL	Detection Limit
DNA	Deoxyribonucleic Acid
EDL	Electrodeless Discharge Lamp
EPA	Environmental Protection Agency
EU	European Union
FAAS	Flame Atomic Absorption Spectroscopy
FAO	Food and Agriculture Organization
GFAAS	Graphite Furnace Atomic Absorption Spectroscopy
GLV	Green Leafy Vegetables
GP	Gastric Phase
HCL	Hollow Cathode Lamp
ICP-AES	Inductively Coupled Plasma Atomic Emission Spectroscopy
ICP-MS	Inductively Coupled Plasma Mass Spectroscopy
IP	Intestinal Phase
IUPAC	International Union of Pure and Applied Chemistry
L1 (S-R)	Soil to Root
L2 (R-S)	Root to Stem
L3 (S-L)	Stem to Leaf
MI	Mobility Index
MPL	Maximum Permissible Limit

n	Sample size
N/A	Not Available
ND	Not Detected
ОМ	Organic Matter
Р	Probability
PBET	Physiologically Based Extraction Test
PFA	Prevention of Food Adulteration Act
рН	Power of Hydrogen
PTDI	Provisional Tolerable Daily Intake
PVC	Poly Vinyl Chloride
RF	Radio Frequency
RSD	Relative Standard Deviation
rpm	Revolutions per minute
SD	Standard Deviation
SF	Stir Fried
SLSI	Sri Lanka Standards Institute
TF	Translocation Factor
THQ	Target Hazard Quotients
TSP	Triple Super Phosphate
USA	United States of America
USDA	United States Department of Agriculture
US-EPA	United Stated Environmental Protection Agency
UK	United Kingdom
WHO	World Health Organization

Acknowledgement

I am exceptionally grateful to my supervisors, Dr. M.A. Jagath Wansapala and Professor D.M. Anil Gunaratne for their continuous guidance, encouragement, support and care given throughout this period. I am also thankful to the University Grants Commission, Sri Lanka, for providing the financial assistance during the first two years of my research project. In addition, my sincere gratitude goes to the Accredited Laboratories of Industrial Technology Institute and SGS Lanka (Pvt.) Ltd. for analyzing the samples and providing the results in due time. Further, I would like to thank Mr. Sasanka Ubesena, the former research assistant at the Instrument Laboratory of Faculty of Applied Sciences, University of Sri Jayewardenepura for providing his assistance in sample analysis during the research project. In addition, I would like to express my gratitude to all the academic, non-academic and technical staff members of the Department of Food Science and Technology of University of Sri Jayewardenepura, for providing their assistance in many ways through this entire period. My sincere gratitude also extends to the administration, academic and non-academic staff of Sabaragamuwa University of Sri Lanka for their immense support throughout the research project, to make it successful.

Occurrence of heavy metal contamination and *in vitro* bioaccessibility of heavy metals in selected green leafy vegetables (GLV) obtained from Colombo District.

Thilini Chathurangi Kananke

ABSTRACT

This research aimed to investigate the occurrence of heavy metal contaminations (Ni, Cd, Cr, Pb and Cu) in five key Sri Lankan green leafy vegetables ["Mukunuwenna" (*Alternanthera sessilis*), "Nivithi" (*Basella alba*), "Thampala" (*Amaranthus viridis*), "Kankun" (*Ipomea aquatica*) and "Kohila Leaves" (*Lasia spinosa*)] grown and marketed in and around Colombo District (Piliyandala, Wellampitiya, Kolonnawa, Kottawa, Bandaragama, Kahathuduwa, Pettah and Delgoda), Sri Lanka. The study also focused on heavy metal contents in soils, irrigated water, fertilizer and animal manure types frequently used by the farmers, bio-accumulation and translocation of metals between different GLV species, the effect of different cooking practices on heavy metal contents in GLV and *in vitro* bioaccessibility of heavy metals in gastrointestinal fractions after dietary ingestion of raw and cooked forms of GLV.

The average concentrations of Cd, Cu, Ni, Cr and Pb in the tested soils were 1.45 ± 1.15 , 66.5 ± 59.52 , 51.5 ± 45.51 , 48.4 ± 42.9 and 39.7 ± 32.26 mg kg⁻¹, respectively in the tested areas. Unlike other elements, the levels of Ni detected in the irrigated water samples collected from Wellampitiya, Kolonnawa and Kahathuduwa areas have exceeded the WHO/FAO safe limit. The mean concentrations of heavy metals tested in all fields and market GLV exceeded the WHO/FAO safe limits, except for Cu. The Wellampitiya, Kolonnawa, Pettah and Kottawa areas showed significantly higher (P<0.05) metal contaminations in GLV compared to those of Piliyandala, Bandaragama, Kahathuduwa

and Delgoda areas. The GLV collected from the market sites have shown slightly increased levels of heavy metals compared with the production sites, but the differences were not significant at P<0.05. The soil pH and organic matter contents have negatively correlated with the heavy metal contents of GLV. The Pb concentrations in the soils and GLV grown closer to the road sides (5 m) were significantly higher than the samples taken farther away from the road sides (> 50 m). Except for Cd in TSP fertilizer, other analyzed heavy metals in manure and fertilizer samples complied with the SLSI standard limits. Irrespective of the species and the location, all the collected GLV showed the distribution pattern for the heavy metals as: roots>stems>leaves. The highest metal bioaccumulations were shown Kohila, while the least accumulations were observed in Thampala, with few exceptions. The magnitude of influence of cooking practices in reducing heavy metals in GLV varied as; Blanching>Stirfrying>Cooking>Raw, for each heavy metal tested in the study. The average bioaccessibility (%) of Ni, Cd, Cr and Pb in GLV were significantly higher (at P<0.05) in the gastric phase than in the intestinal phase, except for Cu. Despite the higher total heavy metal concentrations found in GLV, the bioaccessible fractions of heavy metals were significantly low (at P<0.05) in raw, cooked and stir-fried GLV samples. From the study, it became apparent that Kolonnawa and Wellampitiya areas are not suitable for GLV cultivation and more appropriate heavy metal remediation techniques should be sought in the respective areas to ensure consumer food safety.