Phylogeographic and Population Genetic Structure, and *'kdr'* type gene mutations of *Aedes aegypti* in Sri Lanka

Hettiyakandage Sachini Dinusha Fernando

Ph.D

2017

Phylogeographic and Population Genetic Structure, and 'kdr' type

gene mutations of Aedes aegypti in Sri Lanka

By

Hettiyakandage Sachini Dinusha Fernando

Thesis submitted to the University of Sri Jayewardenepura, Sri Lanka for the award of the Degree of Doctor of Philosophy in

Zoology on 2017

Declaration

The work described in this thesis was carried out by me under the supervision of Prof. B. G. D. N. K. De Silva and Dr. Menaka Hapugoda and a report on this has not been submitted in whole or in part to any university or any other institution for another Degree/Diploma.

Sert

H. S. D. Fernando

Declaration

We certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the University for the purpose of evaluation.

Prof. B. G. D. N. K. De Silva Department of Zoology Faculty of Applied Sciences University of Sri Jayewardenepura

09 06 2019

Date -

IP.p.gode

Dr. Menaka Hapugoda Molecular Medicine Unit Faculty of Medicine University of Kelaniya

07/06/2019

Date

Declaration

We certify that the candidate has incorporated all corrections, additions and amendments recommended by the examiners to this version of the Ph.D thesis.

Prof. B. G. D. N. K. De Silva Department of Zoology Faculty of Applied Sciences University of Sri Jayewardenepura

07/06/2019

Date -

Papagode

Dr. Menaka Hapugoda Molecular Medicine Unit Faculty of Medicine University of Kelaniya

07/06/2019

Date

TABLE OF CONTENTS

Page No

TABLE OF CONTENTS	i-vi
LIST OF TABLES	vii-viii
LIST OF FIGURES	ix-xii
LIST OF PLATES	xiii
LIST OF ABBREVIATIONS	xiv-xvii
ACKNOWLEDGMENTS	xviii-xx
ABSTRACT	xxi-xxiii
CHAPTER 1- INTRODUCTION	
1.1.Dengue	1-2
1.2.Dengue Virus (DENV)	2-3
1.3.Dengue vectors	3-4
1.3.1. Ecology and distribution of dengue vector mosquitoes	5
1.3.2. Phylogeography of Ae. aegypti	6-8
1.3.2.1.Phylogenetic analysis of dengue vectors using	0
mitochondrial DNA (mtDNA) as a marker	9
1.3.2.1.i. Cytochrome c Oxidase subunit I (COI) gene	9-10
1.3.2.1.ii. NADH dehydrogenase subunit 4 (ND4) gene	10
1.3.3. Population genetic structure of Ae. aegypti	10-11
1.3.3.1. Microsatellites as markers for population genetic studies	12-13
1.4. Dengue control	13-15

1.4.1. Insecticide resistance analysis of Ae. aegypti using knockdown	15 17
resistant (<i>kdr</i>) alleles	15-17
1.5. Sri Lankan scenario of dengue and control	18-20
1.6. Background of the present study	20-21
1.7. Objectives	22
1.7.1. General objective	22
1.7.2. Specific objectives	22
CHAPTER 2- LITERATURE REVIEW	
2.1.Vector-borne diseases	23-24
2.2. Dengue	24-26
2.3. History of dengue	26-27
2.4. Dengue Viruses (DENV)	27-28
2.4.1. Origin and evolution of DENV	28-29
2.4.2. Global spread of Dengue Virus (DENV)	29-32
2.5. Epidemiology of dengue	
2.5.1. Global scenario	32-35
2.5.2. Sri Lankan scenario	36-38
2.6. Vectors of dengue	39
2.6.1. Ae. aegypti	40-43
2.6.1.1. Phylogeography of Ae. aegypti	44-48
2.6.1.2. Population genetic structure of Ae. aegypti	48-56
2.7. Control of dengue vectors	56-58
2.7.1. DENV vector control using insecticides	58-59
2.8. Insecticide resistance in mosquito vectors	59-64

2.8.1. kdr mutations of Ae. aegypti	64-68
CHAPTER 3- METHODOLOGY	
3.1. Work plan	69-70
3.2. Materials	
3.2.1. Glassware and plasticware	71
3.2.2. Buffers, stock solutions and reference samples	71
3.2.3. Chemicals and primers	71-74
3.2.4. Laboratory equipment and instruments	75
3.3. Methods	
3.3.1. Pre analytical phase (3 months)	76
3.3.1.1. Selection of study areas	76
3.3.1. 2. Collection of Geographic Positioning System (GPS)	76
information	70
3.3.2. Analytical phase (45 months)	78
3.3.2.1. Field collection of mosquito samples	79
3.3.2.1.i. Collection of larvae	79
3.3.2.1.ii. Collection of adult mosquitoes	79
3.3.2.2. Transferring mosquitoes from the field to the laboratory	80
3.3.2.3. Rearing of mosquito eggs and larvae to adults	80
3.3.2.4. Killing and identification of mosquitoes	80
3.3.2.5. Storage of mosquito samples	81-82
3.3.2.6. Extraction of DNA from mosquito samples	83
3.3.2.7. PART 1. Phylogeographic structure of Ae. aegypti	84
3.3.2.7.i. Analysis of the COI region	85

3.3.2.7.ii. Analysis of the ND4 region	85-86	
3.3.2.8. PART 2. Population genetic structure analysis of Ae.	86-87	
aegypti in Sri Lanka	00 07	
3.3.2.8.i. PCR amplification of microsatellite loci	87-88	
3.3.2.9. PART 3. Distribution of <i>kdr</i> alleles in the Sri Lankan		
Ae. aegypti populations	00-09	
3.3.2.9.i. Real time PCR to identify F1534C mutation	89-91	
3.3.2.9.ii. Allele Specific PCR (AS-PCR) for F1534C	91_97	
mutation)1)2	
3.3.2.9.iii. Real time PCR to identify V1016I mutation	92-93	
3.3.2.9.iv. Allele specific PCR to identify V1016I	۵ <i>۸</i>	
mutation		
3.3.2.9.v. Allele specific PCR to identify V1016 G	95	
mutation))	
3.3.2.9.vi. Amplification of <i>kdr</i> gene	96	
3.3.3. Post analytical phase		
3.3.3.1. Analysis of data		
3.3.3.1.i. PART 1. Phylogeography of Ae. aegypti in Sri	97-100	
Lanka	<i>)</i> / 100	
3.3.3.1.ii. PART 2. Population genetics structure of Ae.	101-103	
aegypti in Sri Lanka	101 105	
3.3.3.1.iii. PART 3.Distribution of <i>kdr</i> alleles in the Sri	10/1_105	
Lankan Ae. aegypti populations	104-103	

CHAPTER 4- RESULTS

4.1. PART 1. Phylogeography of Ae. aegypti in Sri Lanka	106	
4.1.1. Genetic diversity of mitochondrial markers in Sri Lankan Ae.	106 111	
aegypti mosquitoes	106-111	
4.1.2. Genetic diversity of mitochondrial markers in Sri Lankan Ae.	110 110	
aegypti compared to global collections	112-113	
4.1.3. Haplotypes recorded for COI	114-117	
4.1.4. Haplotypes recorded for ND4 gene	118-119	
4.1.5. Phylogeographic relationships among Ae. aegypti haplotypes	120	
4.1.5.1. Bayesian tree for mitochondrial haplotypes	120-122	
4.1.5.2. Phylogeographic relationships – Maximum Likelihood	102 105	
(ML) trees	123-123	
4.1.5.3. Phylogeographic analysis of COI markers using	126 127	
coalescent tree	120-127	
4.1.6. Migration analysis	128-130	
4.2. PART 2. Population genetic structure of Ae. aegypti in Sri Lanka	131	
4.2.1. Null alleles	131-132	
4.2.2. Allele frequencies recorded for the microsatellite markers	132-138	
4.2.2. Comparison of the number of alleles recorded and the respective	138-139	
size ranges in similar studies	130-139	
4.2.4. Summary statistics for the microsatellite loci studied in Ae.	140-144	
aegypti populations	110 111	
4.2.5. Linkage Disequilibrium (LD)	145	
4.2.6. Genetic differentiation between mosquito populations	145-146	

4.2.7. Population structure analysis	147-154	
4.2.8. Migration rate and direction of Ae. aegypti mosquitoes	155-157	
4.2.8.i. Rate and gene flow between mosquito populations	158	
4.2.9. Isolation by distance	159	
4.2.10. Variation of molecular variance between individuals and		
Populations	160	
4.3. PART 3. Distribution of <i>kdr</i> alleles in sodium channel in the Sri		
Lankan Ae. aegypti populations		
4.3.1. Presence of F1534C, V1016G and V1016I mutations in Sri	161 165	
Lankan Ae. aegypti populations during 2013-2015	101-105	
4.3.2. F1534C Allele distribution in Sri Lankan mosquito populations	166	
4.3.3. Partial sequencing of the Ae. aegypti voltage gated sodium	167 160	
channel gene	107-109	

CHAPTER 5- DISCUSSION

5.1. PART 1. Phylogeography of Ae. aegypti in Sri Lanka	170-179
5.2. PART 2. Population genetics structure of Ae. aegypti	179-184
. PART 3. Study on distribution of <i>kdr</i> alleles in the Sri Lankan <i>Ae</i> .	
aegypti populations	102 100

CHAPTER 6- CONCLUSION 189-191 REFERNCES LIST OF PUBLICATIONS APEENDICES

LIST OF TABLES

		Page No
Table 2.1	Population genetics and phylogeographic studies of Ae.	55-56
	aegypti conducted around the world	
Table 2.2	Dengue vaccines currently at the clinical development	57
	phase	
Table 2.3	kdr mutations recorded in Ae. aegypti in the world	67-68
Table 3.1	Primers used in the study	72-74
Table 3.2	Laboratory equipment and instruments	75
Table 3.3	Locations, geographic coordinates, and the year of	82
	collection of mosquito samples	
Table 3.4	Total number of samples used per district for the	84
	mtDNA analysis	
Table 3.5	Total number of samples used per district for the	87
	microsatellite analysis	
Table 3.6	Total number of samples analyzed per each population	89
	for kdr genotyping	
Table 4.1	Summary of genetic diversity indices for the marker	110
	COI in Sri Lankan Ae. aegypti	
Table 4.2	Summary of genetic diversity indices for ND4 gene	111
	among Sri Lankan Ae.aegypti	
Table 4.3	Genetic variation in ND4 and COI genes	113
Table 4.4	Haplotype table for COI	114-115

Table 4.5	Identical COI haplotype occurrence in the world	116-117
Table 4.6	Haplotype table for <i>ND4</i>	118-119
Table 4.7	Tracer analysis of the posterior probability, likelihood,	
	Prior probability, tree likelihood and average tree	129-130
	height. B) Tracer analysis of posterior probability that	
	the migration rate (rateIndicator) is positive between a	
	pair of geographic regions x and y . (ESS- Effective	
	Sample Size, BF- Bayes Factor, Std.Error- Standard	
	Error)	
Table 4.8	Null allele frequency for the microsatellite loci studied.	132
Table 4.9	Comparisons of microsatellite loci with number of	139
	alleles and size range with previous studies in different	
	countries.	
Table 4.10	Summary statistics for microsatellite diversity.	141-144
Table 4.11	Pairwise matrix of F_{ST} between different cities	146
Table 4.12	The effective migration rate between the donor and the	156
	recipient populations.	
Table 4.13	Analysis of the molecular variance (AMOVA) between	160
	and within the populations of Ae. aegypti in Sri Lanka.	
Table 4.14	Real time and AS-PCR results for the F1534C mutation	163
Table 4.15	AS-PCR results for the V1016G mutation	164
Table 4.16	Real time and AS-PCR results for the V1016I mutation	165

LIST OF FIGURES

Page no.

Figure 1.1	Distribution of dengue cases throughout the world during	2
	April to June, 2017 (http://www.healthmap.org/dengue/en)	
Figure 1.2	Figure 1.2. Mutations associated with pyrethroid resistance	17
	appearing in the sodium voltage channel of Ae. aegypti.	
	Numbering of the position is based on the housefly genome	
	(Genbank accession number AAB47604). The number of the	
	corresponding mosquito genome is marked in parenthesis	
	(Genbank accession number EU399181) (Du et al., 2016).	
Figure 1.3	Dengue cases in the year of 2017 in Sri Lanka	19
	(Epidemiology unit, 2017)	
Figure 2.1	Bars indicate average annual number of DF and/or DHF	25
	reported to the WHO) (WHO, 2017). (AMRO - Regional	
	WHO Office for America, SEARO –Regional WHO Office	
	for South-East Asia, WPRO - Regional WHO Office for	
	Western Pacific).	
Figure 2.2	The genome of the dengue virus (Guzman et al., 2010)	28
Figure 2.3	Spatial distribution of cumulative number of DENV	32
	serotypes since 1943. (Messina et al., 2013)	
Figure 2.4	Distribution of the risk of dengue occurrence across the	33
	world (Simmons et al., 2012)	
Figure 2.5	Average number of dengue cases reported to WHO during	35

2010-2016 in the world (WHO, 2017)

Figure 2.6	Seasonal prevalence of dengue cases in Sri Lanka by weeks	37
	from 2010 to 2017(Epidemiology unit, 2017)	
Figure 2.7	Increase of DF incidence reports during the period of 2013-	38
	2017 in Sri Lanka (Epidemiology unit, 2017)	
Figure 2.8	Global distribution of Ae. aegypti. The map describes the	40
	probability of occurrence for Ae. aegypti in the world	
	(Kraemer et al., 2015)	
Figure 2.9	Adult mosquito of Ae. aegypti mosquito (CDC, 2016)	41
Figure 2.10	Schematic presentation of the Drosophila para voltage gated	63
	sodium channel (Kazachkova, 2007)	
Figure 2.11	Mutations in the sodium channel protein that are associated	64
	with pyrethroid resistance in Ae. aegypti (Du et al., 2016)	
Figure 3.1	Map of Sri Lanka showing selected sampling sites for	77
	collection of Ae. aegypti	
Figure 3.2	Schematic presentation of methods in PARTs 1, 2 and 3	78
Figure 3.3	Melting curve analysis for F1534C mutation	90
Figure 3.4	Melting curve analysis for V1016I mutation	93
Figure 4.1	Maximum likelihood tree COI gene	121
Figure 4.2	Maximum likelihood tree ND4 gene	122
Figure 4.3	Bootstrapped ML tree using ND4 gene	124
Figure 4.4	Bootstrapped ML tree using COI gene	125
Figure 4.5	Coalescent tree derived using the COI gene	127
Figure 4.6	Allele sizes and frequencies at locus AT1 in Ae. aegypti	133

populations.

Figure 4.7	Allele sizes and frequencies at locus AG7 in Ae. aegypti	133
	populations	
Figure 4.8	Allele sizes and frequencies at locus AC1 in Ae. aegypti	134
	populations	
Figure 4.9	Allele sizes and frequencies at locus AG4 in Ae. aegypti	134
	populations.	
Figure 4.10	Allele sizes and frequencies at locus AC5 in Ae. aegypti	135
	populations	
Figure 4.11	Allele sizes and frequencies at locus AG2 in Ae. aegypti	135
	populations	
Figure 4.12	Allele sizes and frequencies at locus AC2 in Ae. aegypti	136
	populations	
Figure 4.13	Allele sizes and frequencies at locus AG5 in Ae. aegypti	136
	populations	
Figure 4.14	Allele sizes and frequencies at locus B07 in Ae. aegypti	137
	populations	
Figure 4.15	Allele sizes and frequencies at locus H08 in Ae. aegypti	137
	populations	
Figure 4.16	Allele sizes and frequencies at locus A10 in Ae. aegypti	138
	populations	
Figure 4.17	Mean L (K) \pm SD Vs K for 20 runs for each K value.	148
Figure 4.18	Rate of change of the likelihood distribution (Mean \pm SD)	149
	Vs K clusters	

Figure 4.19	Absolute values of the second order rate of change of the	
	likelihood distribution (Mean \pm SD) Vs K value	
Figure 4.20	Average second derivative / SD of the second derivative Vs	151
	K value	
Figure 4.21	Rate of the change of the likelihood distribution	
Figure 4.22	Cluster membership of the individuals to K=3 and K=6	153
	estimated by STRCUTURE.	
Figure 4.23	Rate and gene flow among the collection sites of Aedes	157
	aegypti in Sri Lanka	
Figure 4.24	Scatter plot and regression line of genetic and geographic	159
	distance for all Sri Lankan Aedes aegypti populations ($R^2 =$	
	0.11, P= 0.001)	
Figure 4.25	Map of Sri Lanka showing sampling sites and the occurrence	166
	of <i>kdr</i> mutations in <i>Ae. aegypti</i>	
Figure 4.26	ClustalW multiple sequence alignment showing the	167
	variations at the 1016 kdr mutation position	
Figure 4.27	ClustalW multiple sequence alignment showing the	168
	variations at the 1534 kdr mutation position	

xii

LIST OF PLATES

Page No

Plate 4.1	Gel photograph showing the amplified products of COI and	107
	ND4 of the mtDNA analysis of Sri Lankan Ae. aegypti	
Plate 4.2	Gel photograph showing the result of AS-PCR assay for	162
	genotyping of F1534C mutation.	

LIST OF ABBREVIATIONS

А	Adenine
AGE	Agarose Gel Electrophoresis
AD	Amno Domini
AS-PCR	Allele-Specific Polymerase Chain Reaction
ATP	Adenosine Triphosphate
BG	BioGents
bp	base pair
С	Cytosine
CO ₂	Carbon Dioxide
COI	Cytochrome C Oxidase subunit I
DDT	Dichlorodiphenyltrichloroethane
DENV	Dengue Virus
DF	Dengue Fever
DHF	Dengue Hemorrhagic Fever
DNA	Deoxyribonucleic Acid
dNTP	Deoxy Nucleotide Triphosphate
DSS	Dengue Shock Syndrome
Ε	Envelop protein
EDTA	Ethylenediaminetetraacetic Acid
F1534C	Phenylalanine1534Cysteine
g	gram

G	Guanine
GABA	Gamma-Aminobutyric acid
GIS	Geographical Information System
Gly923Val	Glycine923Valine
GPS	Global Positioning System
h	haplotype
Hd	Haplotype diversity
H _E	Expected Heterozygosities
Ho	Observed Heterozygosities
HWE	Hardy- Weinberg Equilibrium
IDT	Integrated DNA Technologies
Ile1011Met	Isoleucine1011Methionine
Ile1011Val	Isoleucine1011Valine
k	Average number of nucleotide differences
Kb	Kilo bases
kdr	knockdown resistance
km	kilometre
L	Litre
LD	Linkage Disequilibrium
Leu982Trp	Leucine982Trptophan
М	Molar

m	metre
μg	Microgram
μl	Microlitre
mA	milli Ampere
ml	millilitre
mM	millimolar
mtDNA	mitochondrial DNA
NADH	Nicotinamide Adenine Dinucleotide
NaV	Sodium Voltage Channel
ND4	NADH dehydrogenase subunit 4
ng	nanogram
nm	nanometre
no.	number
NS	Non Structural
NUMTs	nuclear mtDNA
°C	Centigrade
PCR	Polymerase Chain Reaction
pmol	picomole
RNA	Ribonucleic Acid
rpm	revolutions per minute

R _S	Allelic Richness
RT	Room Temperature
SDS	Sodium Dodecyl Sulfate
SNP	Single Nucletode Polymorphism
SSR	Simple Sequence Repeats
STR	Short Tandem Repeats
Т	Thymine
TBE	Tris-borate-EDTA
Tris	Tris(hydroxymethyl)aminomethane
TE	Tris EDTA
U.S.A	United States of America
UV	Ultra Violet
V	Volt
Val1016Gly	Valine1016Glycine
Val1016Ile	Valine1016Isoleucine
WHO	World Health Organization
yr	years
π	Nucleotide diversity
π_a	placement substitution site
π_s	synonymous substitution site

ACKNOWLEDGMENTS

I would like to extend my sincere gratitude to my supervisor Prof. B.G.D.N.K. De Silva, Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Sri Lanka for guidance, timely comments and encouragement given to me throughout the period of the study. I am also extremely grateful to him for providing me with an extremely valuable opportunity to go for a study visit to Colorado State University, USA.

I am also very much thankful to my co-supervisor Dr. Menaka Hapugoda, Molecular Medicine Unit, Faculty of Medicine, University of Kelaniya for her kind guidance and encouragement during the period of my study especially during the thesis writing.

I am also very much thankful to Prof. William C. Black IV, Department of Microbiology, Immunology and Pathology, Arthropod-borne and Infectious Disease Laboratory, Colorado State University, USA for his immense help in analyzing the results generated from my study conducted in Sri Lanka. I am immensely grateful to him for building up my knowledge in analytical methods and my theoretical knowledge in phylogenetic and population genetic studies. I am very much thankful to him for prioritizing me and my work during my two months visit at his laboratory despite his very busy schedule.

I am really grateful to Dr. Rushika Perera, Assistant Professor, Department of Microbiology, Immunology and Pathology, Arthropod-borne and Infectious Disease Laboratory, Colorado State University, USA for housing me at her place for two whole months and giving me a wonderful experience which I will remember for the rest of my life. I am also really grateful to her for teaching me cell culture and virological techniques at her laboratory in every possible movement. I am especially thankful to her for turning a mentor for me and giving me advice and courage to pursue my dreams in the field.

I am also very much thankful to Ms. Karla Saavedra-Rodriguez, Ms. Selene G-Luna, Ms. Farah Vera Maloof and Ms. Ashley Janich, Department of Microbiology, Immunology and Pathology, Arthropod-borne and Infectious Disease Laboratory, Colorado State University, USA for helping me in the laboratory studies and providing me with the most wonderful time period of my life at Colorado.

I am thankful to Mr. Dinesh (Puttalum), Mr. Vajira Upeksha (Trincomalee) and Mr. Nirmal Subasinghe (Hambanthota), Entomological Assistants attached to Anti-Malaria Campaign, Sri Lanka for providing me mosquito samples.

I also wish to acknowledge Department of Zoology, University of Sri Jayewardenepura, Sri Lanka for providing me with this opportunity and all the technical staff for helping me in various aspects of my study. I am really grateful to Ms. Dilakshini Dayananda, Ms. Iresha Harischandra and Ms. Pamoda Jayatunga, Department of Zoology, University of Sri Jayewardenepura, Sri Lanka for their encouragement and great help during my study period.

Last but not least my heartfelt gratitude goes to my beloved sister and my mother whose encouragement made this thesis a reality. I am really in gratitude to them for standing with me through my tears and difficulties always encouraging me to do my best. This thesis is dedicated to them and my late father.

Phylogeographic and Population Genetic Structure of Aedes aegypti in

Sri Lanka

H.S.D. Fernando

ABSTRACT

Mosquitoes as disease causing vectors, are of major relevance as insect invaders, due to their ability to transmit pathogens to humans and their ability to adapt to human built environment. *Aedes aegypti* (Linneaus), major vector for Dengue Viruses (DENV), originated as a canopy dwelling species in Africa, feeding on non-human primates, invaded the tropics and subtropics of the world through globalization and trade. In Sri Lanka, dengue is the most serious arboviral infection accounting for severe number of deaths annually. The present study was conducted to investigate the evolutionary history of *Ae. aegpti* in Sri Lanka, and to study the present genetic structure of *Ae. aegypti* mosquito populations within the country.

Ae. aegypti mosquitoes were sampled from eight districts during the period of 2013-2015 in Sri Lanka. The phylogeographic relationships of Sri Lankan *Ae. aegypti* was studied in an macro-evolutionary time frame using two mitochondrial Deoxy Ribonucleic Acid (DNA) markers named Cytocrome C Oxidase 1 (*COI*) and NADH subunit 4 (*ND4*) in PART 1 of the study. The population genetic structure of *Ae. aegypti* in the island was studied using eleven microsatellite loci in PART 2 of the study and the results were used to interpret gene flow patterns and population structuring of the

species in the island. The presence and distribution of knockdown resistant (*kdr*) alleles were studied, hypothesizing a resistant mosquito population for the most commonly used insecticide in the country, pyrethroids, in PART 3 of the study. Here three most commonly occurring point mutations, Phenylalanine 1534 Cysteine (F1534C), Valine 1016 Isoleucine (Val1016Ile) and Valine 1016 Glycine (Val1016Gly) in the sodium voltage gated channel was genotyped through Allele Specific Polymerase Chain Reaction (AS-PCR) and real time PCR assays.

The phylogeographic study in PART 1 of the study recorded 14 *COI* and 40 *ND4* haplotypes for the first time in Sri Lanka, with the highest genetic diversity recording for *ND4* gene. Presence of two mitochondrial lineages of *Ae. aegypti* was recorded among Sri Lankan mosquitoes. These two Sri Lankan lineages were related respectively to East and West African specimens and the analysis of gene flow patterns revealed abundant gene flow between South-East Asian countries and Sri Lanka. The population structure analysis in the PART 2 of the study revealed high genetic diversity in Sri Lankan *Ae. aegypti* with all the studied loci being polymorphic in all populations. The software STRUCTURE estimated three genetic clusters with the presence of weak isolation by distance pattern. A non-equilibrium analysis of gene flow rates and patterns indicated abundant bidirectional gene flow among all samples collected. The study of *kdr* allele mutations in the PART 3 of the study revealed the presence of F1534C mutation in Sri Lanka. The mutant allele was found to be wide spread in the island and it can be hypothesized that there is a resistant mosquito population for the insecticide. However V1016I and V1016G mutations were not recorded in the present study.

The efficiency of transmitting DENV and the ability to resist insecticides is dependent upon the genetic composition of the *Ae. aegypti* population. The identification of the presence of *Ae. aegypti* belonging to the two clades, representing the origins of East and West Africa suggests differences in flavivirus susceptibility and resistance to insecticides. Population genetic structure of the Sri Lankan *Ae. aegypti* revealed highly genetically differentiated populations due to genetic drift. Vector control through source reduction and insecticide treatment of breeding sites along with the seasonal changes may create periodic population reductions leading to genetic drift. Genetic drift may result in an increase of selectable genetic variation and could lead to the selection of insecticide resistance genes thus making the newly found population resistance to commonly used insecticides. Thus the results of the present study are of utmost importance to in understanding the corridors and barriers for mosquito movement and in turn, develop the strategies for controlling DENV vector mosquitoes more effectively.

Key words: *Aedes aegypti*, phylogeographic structure, mitochondrial DNA, population genetic structure, microsatellites, *kdr*