STUDY ON

ETHEPHON (2-CHLOROETHYLPHOSPHONIC ACID) STIMULATION OF NATURAL RUBBER LATEX ON PHYSIO-CHEMICAL AND MECHANICAL PROPERTIES OF RUBBER

by

Anusha Priyanthi Attanayake

Ph.D

STUDY ON

ETHEPHON (2-CHLOROETHYLPHOSPHONICACID) STIMULATION OF NATURAL RUBBER LATEX

ON

PHYSIO-CHEMICAL AND MECHANICAL PROPERTIES OF RUBBER

By

Anusha Priyanthi Attanayake

2.4 JUL 2017

Thesis submitted to the University of Sri Jayewardenepura

For the award of the

Degree of Doctor of Philosophy in Chemistry

STUDY ON

ETHEPHON (2-CHLOROETHYLPHOSPHONICACID) STIMULATION OF NATURAL RUBBER LATEX

ON

PHYSIO-CHEMICAL AND MECHANICAL PROPERTIES OF RUBBER

By

Anusha Priyanthi Attanayake

Thesis submitted to the University of Sri Jayewardenepura

For the award of the

Degree of Doctor of Philosophy in Chemistry

CERTIFICATION OF SUPERVISORS

"We certify that the candidate has incorporated all corrections, additions and amendments recommended by the examiners to this final version of the PHD thesis"

Professor L.Karunanayake

Department of Chemistry

University of Sri Jayewardenepura

Nugegoda

Sri Lanka

.....

Dr. A.H.L.R. Nilmini

Polymer Chemistry Department

Rubber Research Institute of Sri Lanka

Rathmalana

DECLARATION

The work described in this thesis was carried out by me under the supervision of Professor L.Karunanayake of the University of Sri Jayewardenepura and Dr. A.H.L.R Nilmini, Rubber Research Institute of Sri Lanka and a report on this has not been submitted in whole or in part to any university or any institution for another Degree/Diploma.

Signature: Atathyph

Name : Anusha Priyanthi Attanayake

SUPERVISORS' CERTIFICATION

We certify that the above statement made by the candidate is true and that this thesis is submitted for submission to the University for the purpose of evaluation.

Professor L.Karunanayake Department of Chemistry University of Sri Jayewardenepura Nugegoda Sri Lanka Dr A.H.L.R Nilmini Polymer Chemistry Department Rubber Research Institute of Sri Lanka Ratmalana Sri Lanka Dedicated to my dear Husband

TABLE OF CONTENTS

	Page
TABLE OF CONTENTS	i - ix
LIST OF TABLES	Х
LIST OF FIGURES	xi - xvi
LIST OF ABBREVIATIONS	xvii
ACKNOWLEDGEMENT	xviii
ABSTRACT	xix
CHAPTER 1: GENERAL INTRODUCTION	1
CHAPTER 2: LITERATURE REVIEW	7
2.1 Sri Lanka Latex Harvesting Systems	7
2.1.1 Mode of action of ethephon	7
2.1.2 Effect of ethephon stimulation	8
2.2 Structure, Composition and Biosynthesis of Natural Rubber	9
2.2.1 Structure of natural rubber	9
2.2.1.1Chemical structure of rubber molecule	10
2.2.1.2 Natural rubber particle	11
2.2.2 Composition of natural rubber latex	13
2.2.2.1 Frey Wyssling particles	15

2.2.2.2 Lutoids

2.2.2.3 Proteins	17
2.2.2.4 Lipids	17
2.2.2.5 Phospholipids	18
2.2.2.6 Inositols and carbohydrates	18
2.2.2.7 Inorganic constituents	18
2.2.2.8.Colouring substances	19
2.2.3 Bio synthesis of natural rubber latex	20
2.2.3.1 Rubber transferase	23
2.2.3.2 Molecular weight and molecular weight distribution	25
2.2.4 Characteristic features related to the structure of rubber molecule	26
2.2.4.1 Gel formation	26
2.2.4.2 Green strength	28
2.2.4.3 Bimodal networks	29
2.2.4.5 Crystallization	32
2.4.4.6. Glass transition temperature	33
2.2.5 Micro flora associated with latex	35
Latex Physiological Parameters	36
2.3.1 Sucrose content	36
2.3.2 Thiol content	37
Natural Rubber Latex Properties	37
2.4.1 Total solid content	37

2.3

2.4

	2.4.2 Dry rubber content	37
	2.4.3 Alkalinity	38
	2.4.4.Volatile fatty acid number	38
	2.4.5 Magnesium content	39
	2.4.6 Viscosity	39
2.5 Ra	w Rubber Properties	41
	2.5.1 Dirt content	41
	2.5.2 Initial wallace plasticity	41
	2.5.3 Plasticity retention index	42
	2.5.4 Accelerated storage hardening test	44
	2.5.5 Mooney viscosity	45
	2.5.6 Stress relaxation	46
	2.5.7 Nitrogen content	48
	2.5.8 Acetone extract	48
	2.5.9 Intrinsic viscosity	48
2.6 Ph	ysico –mechanical Properties	49
	2.6.1 Hardness	49
	2.6.2 Modulus	50
	2.6.3 Tensile strength	50
	2.6.4 Elongation at break	51
	2.6.5 Compression set	51
	2.6.6 Tear strength	52

2.6.7 Rebound resilience	53
2.6.8 Cross link density	53
CHAPTER 3: MATERIALS AND METHODS	55
3.1 Introduction	55
3.2 Experimental Design and Location of the Study	56
3.3 Determination of Latex Physiological Parameters	57
3.3.1 Yield (g/t/t/)	57
3.3.2 Analysis of sucrose content	57
3.3.3 Latex thiol content	57
3.4 Determination of Latex Characterization Properties	58
3.4.1 Dry rubber content	58
3.4.2 Total solid content	58
3.4.3 Serum magnesium content	59
3.4.4 Volatile fatty acid number	59
3.4.5 Viscosity	60
3.4.6 Identification of micro flora in latex	60
3.5 Determination of Raw Rubber Properties	62
3.5.1 Determination of ash content	62
3.5.2 Determination of nitrogen content	62
3.5.3 Determination of initial plasticity and plasticity retention index	63
3.5.4 Determination of storage hardening	64
3.5.5 Determination of mooney viscosity	65

3.5.6 Determination of lovibond colour	66
3.5.7 Solvent extraction and FTIR analysis	66
3.5.8 Determination of the gel content	67
3.5.9 Determination of molecular weight by intrinsic viscosity	67
3.6 Physico-mechanical Properties	69
3.6.1 Preperation of ACS 1 gum compound	69
3.6.2 Determination of properties of uncured compounds	69
3.6.2.1 Determination of cure properties	69
3.6.2.2 Determination of green strength	70
3.6.3 Determination of properties of cured compounds	70
3.6.3.1 Determination of hardness	70
3.6.3.2 Determination of tensile strength	71
3.6.3.3 Determination of tear strength	71
3.6.3.4 Determination of compression set	71
3.6.3.5 Determination of rebound resilience	72
3.6.3.6 Determination of cross link density	72

CHAPTER 4: EFFECT OF ETHEPHON STIMULATION ON NATURAL RUBBER LATEX PROPERTIES	74
4.1 Introduction	74
4.2 Objectives	75
4.3 Methodology	75
4.4 Results & Discussion	76

4.4.1 Effect of different ethephon concentrations on physiological properties of latex.	76
4.4.1.1 Latex sucrose content and Thiol content of latex	76
4.4.1.2 Latex volume and dry rubber yield under different ethephon concentrations	78
4.4.2 Analysis of latex quality parameters at different concentrations of Ethephon	80
4.4.2.1 Total solid content and dry rubber content	80
4.4.2.2 Non rubber content	82
4.4.2.3 Regulation of volatile fatty acid number with Ethephon concentration	84
4.4.2.4 Variation of Magnesium ion concentration with Ethephon concentration	85
4.4.3 Identification of effect of Ethephon concentration on latex rheological properties	87
4.4.4 Investigation of effective time period of ethephon on latex characteristic	93
4.5 Effect of ethephon concentration on growth of bacteria in stimulated latex.	97
CHAPTER 5: EFFECT OF ETHEPHON STIMULATION ON RAW RUBBER PROPERTIES	102
5.1 Introduction	102
5.2 Objectives	103
5.3 Methodology	103
5.4 Results & Discussion	104
5.4.1 Composition of raw rubber produced by treating with 1%-5% ethephon.	104

5.4.1.1. Ash and inorganic metal ions	104
5.4.1.2 Volatile matter content	107
5.4.1.3 Nitrogen content	107
5.4.1.4 Storage hardening	108
5.4.1.5 Acetone extractable non-rubber	111
5.4.1.4 Gel content	116
5.4.1.7 Molecular weight	118
5.4.2 Rheological behavior of natural rubber with Ethephon stimulation	120
5.4.2.1 Plasticity number	120
5.4.2.2 Plasticity retention index	122
5.4.2.3 Lovibond colour index	125
5.4.2.4 Mooney viscosity	129
5.4.2.5 Stress relaxation and elasticity	131
5.5 Investigation of effective time period with ethephon on raw rubber characteristic	133
5.5.1 Ash content	133
5.5.2 Mooney viscosity	134
5.5.3 Plasticity number and plasticity retention index	135
5.5.4 Nitrogen content	136
5.5.5 Lovibond colour index	137

CHAPTER 6: EFF ON	ECT OF ETHEPHON STIMULATION PHYSICO- MECHANICAL PROPERTIES	138
6.1 Introdu	ction	138
6.1.	.1 Objectives	138
6.1.	2 Methodology	138
6.2 Result &	& Discussion	139
6.2.	.1 Cure characteristics of natural rubber gum compound.	139
6.3 Strength	Properties of Stimulated Rubber	141
6.3.	.1 Effect of stimulation on tear strength of stimulated rubber	141
6.3.	2 Effect of stimulation on elongation at break	143
6.3.	.3 Effect of stimulation on tensile strength of stimulated rubber	144
6.3.	.5 Effect of stimulation on green strength of stimulated rubber	144
6.4 Effect of	of bimodality on strength properties	152
6.5 Effect of	of stimulation on elastic properties of NR gum vulcanizate	155
6.5.	.1 Modulus of stimulated rubber	155
6.5.	2 Effect of stimulation on hardness of NR gum vulcanizate	158
6.5.	.3 Effect of stimulation on rebound resilience of NR gum vulcanizate	159
6.5.	.4 Effect of stimulation on compression set of NR gum vulcanizate	160
6.6 Ageing	Properties of NR gum vulcanizate	162
6.6.	.1 Effect of accelerated ageing on strength properties of stimulated NR gum vulcanizate	162
6.6.	2 Effect of accelerated ageing on elastic properties of stimulated NR gum vulcanizate	164

6.7 Morphology of cryogenic fracture surface by scanning electron microscope(SEM)	165
CHAPTER 7: CONCLUSIONS AND FUTURE STUDIES	167
REFERENCES	171
APPENDIX	191

LIST OF TABLES

Page

Table 2. 1	Composition of Natural Rubber Latex	13
Table 3.1	The percentage composition of the medium	60
Table 4.1	Viable bacterial count after 72 hours at 35°C and Gram staining	97
	results for field latex enumerate in modified KIA medium.	
Table 4.2	Viable bacterial count for stimulated latex treated	100
	with different concentrations of ethephon.	
Table 5.1	Variation of ash Content and inorganic metal ions with the	104
	application of 1%-5% ethephon.	
Table 5.2	Variation of volatile matter content, Nitrogen content and	110
	Storage hardening with ethephon concentration (1%-5%)	
Table 5.3	Acetone extractable non rubber content, Glass transition	112
	temperature and corresponding Δ cP values of stimulated rubber	
	with 1%-5% ethephon dosage in S/2 d3 tapping systems	
Table 5.4	Variation of Viscosity average molecular weight and	118
	Huggings constant with ethephon concentration.	
Table 5.5	Variation of thiol content, Plasticity index and Lovibond	123
	colour Index with 1%-5% treated ethephon concentration.	
Table 5.6	Variation of elasticity and elastic energy retention exponent	131
	with different concentrations of ethephon.	
Table 6.1	Cure characteristics of natural rubber gum vulcanizate.	139
Table 6.2	Crosslink Density of stimulated natural rubber gum vulcanizate	150

LIST OF FIGURES

Page

Figure 2.1	Presumed structure of rubber molecule and crosslink formation	10
Figure 2.2	Main components in ultra centrifuged NR latex	14
Figure 2.3	Biosynthesis Pathway of natural	21
Figure 2.4	Natural rubber biosynthesis from isopentenyl diphosphate	23
Figure 2.5	Typical molecular weight distribution curve	25
Figure 2.6	Typical Glass transition temperature curve.	34
Figure 2.7	Typical Mooney viscosity and Mooney relaxation curve	45
Figure 2.8	Mooney stress relaxation plot of log t vs. log M	47
Figure 2.9	Variation of mechanical properties of rubber vulcanizate	49
	with increasing crosslink density	
Figure 2.10	Typical stress- Strain curve	51
Figure 4.1	Effect of different ethephon concentration on sucrose	76
	and thiol content of latex	
Figure 4.2	Effect of different ethephon concentrations	78
	on latex yield and latex volume	
Figure 4.3	Effect of different ethephon concentrations on dry rubber content	80
	and total solid content	
Figure 4.4	Effect of different ethephon concentrations on total	82
	non-rubber content and acetone extractable non-rubber content	

Figure 4.6	Effect of different ethephon concentrations on	84
	volatile fatty acid number	
Figure 4.7	Effect of different ethephon concentrations on	85
	latex magnesium content	
Figure 4.8	Effect of different ethephon concentrations on latex viscosity	87
Figure 4.9	Rheological behavior of stimulated latex with	
	different ethephon concentrations	88
Figure 4.10	Particle size distribution in terms of D90-D10 with different	90
	concentrations of ethephon treatment.	
Figure 4.11	Correlation between dry rubber content with latex viscosity	92
Figure 4.12	Variation of total solid content and dry rubber content	93
	of latex within 30 days after stimulation	
Figure 4.13	Variation of volatile fatty acid number of latex within	
	30 days after stimulation	94
Figure 4.14	Variation of latex viscosity of latex within	
	30 days after stimulation	95
Figure 4.15	Variation of conductivity of latex within	
	30 days after stimulation	96
Figure 4.16	Gram posive spore bearing bacilli and gram positive	98
	bacilli non-sporing bacteria	
Figure 4.17	Staphylococci bacteria grow in ammoniated	99
	field latex, Gram negative bacilli	

Figure 4.18	Bacterial colonies cultured from stimulated latex	
	with 10^{-1} to 10^{-6} serial dilutions	100
Figure 5.1	FTIR spectrum of acetone extract taken from 1%-5%	115
	ethephon stimulated rubber	
Figure 5.1.1	FTIR spectrum of acetone extract taken from control	
	sample and 1% treatment	113
Figure 5.1.2	FTIR spectrum of acetone extract taken from 2%	
	and 3% treatment	114
Figure 5.1.3	FTIR spectrum of acetone extract taken from 4%-5% treatment	115
Figure 5.2	Variation of gel content with viscosity average molecular	116
	weight of stimulated rubber with 1%-5% ethephon.	
Figure 5.3	Variation of plasticity number of rubber made out of stimulated	
	latex treated with different concentrations of ethephon.	120
Figure5.4	Variation of plasticity value with the application of	122
	1%-5% ethephon	
Figure 5.5	Variation of thiol content and plasticity retention index	
	with ethephon	124
Figure 5.6	Visual appearance of rubber samples treated with	125
	different concentrations of ethephon	
Figure 5.7	The probable reaction mechanism for oxidation	125
	of O-diphenol in the presence of glutathione.	

Figure 5.8	FTIR spectrum of acetone extract of stimulated rubber	
	with 1%- 5% ethephon.	129
Figure 5.9	Variation of Mooney viscosity with ethephone	129
	concentration (1%-5%)	
Figure 5.10	Mooney viscosity curve for the stimulated rubber	130
Figure 5.11	Relaxation data on a log t vs log M for 1% stimulated rubber.	132
Figure 5.12	Ash content in UFUB rubber in S/2,d/3 tapping system,	133
	stimulated with 3 % ethephon Concentration	
Figure 5.13	Mooney viscosity in UFUB rubber in S/2, d/3 tapping system,	134
	stimulated with 3 % ethephon Concentration	
Figure 5.14	Plasticity number and Plasticity retention index in UFUB	135
	rubber in S/2,d/3 tapping system, stimulated with	
	3 % ethephon concentration.	
Figure 5.15	Nitrogen content in stimulated UFUB rubber in S/2,d/3	136
	tapping system, stimulated with 3 % ethephon.	
Figure 5.16	Lovibond Colour Index in UFUB rubber in S/2,d/3	137
	tapping system, stimulated with 2.5 % Ethephon	
Figure 6.1	Variation of tear strength with ethephon concentration.	141
Figure 6.2	Ultimate tear strength as a function of elongation of	142
	unfilled vulcanizate prepared from stimulated rubber	
	treated with 1%-5% ethephon concentration.	
Figure 6.3	Variation of elongation at break with ethephon concentration.	143

Figure 6.4	Variation of tensile strength of stimulated rubber with	144
	different ethephon concentrations.	
Figure 6.5	Correlation of tensile strength with crosslink density	144
Figure 6.6	Stress strain curve of unfilled vulcanizate prepared from	146
	stimulated rubber treated with 1%-5% ethephon.	
Figure 6.7	Variation of green strength of latex casting film prepared	147
	from stimulated latex treated with different concentrations	
	of ethephon.	
Figure 6.8	Stress strain curve of latex casting film prepared from	149
	stimulated latex treated with different concentrations of	
	ethephon at low strain rate.	
Figure 6.9	Typical modal for bimodal network.	152
Figure 6.10	Variation of onset – end value of Tg with ethephon	
	concentration.	154
Figure 6.11	Variation of modulus of stimulated rubber at,100% elongation	155
	and 300% 500% elongation	
Figure 6.12	Crosslink density of rubber as a function of 500% Modulus	157
Figure 6.13	Variation of hardness of stimulated NR gum vulcanizate with	158
	(a) ethephon Concentration	
Figure 6.14	Variation of rebound resilience of stimulated NR gum	159
	vulcanizate with ethephon Concentration.	

Figure: 6.15	Variation of dynamic compression set of stimulated NR	160
	gum vulcanizate treated with 1%-5% ethephon Concentration	
Figure 6.16	Variation of compression set of stimulated NR gum	161
	vulcanizate with crosslink density	
Figure 6.17	Effect of ageing on Tear strength and Elongation at break	162
	of stimulate NR gum vulcanizate.	
Figure6.18	Effect of accelerated ageing on tensile strength of stimulated	163
	NR gum vulcanizate.	
Figure 6.19	Effect of accelerated ageing on 100% modulus, 300%	164
	modulus and 500% modulus of stimulated NR gum Vulcanizate.	
Figure6.20	SEM micrographs of cryogenic fracture surfaces of	166
	vulcanizate prepared from stimulated rubber treated	
	with different concentrations of ethephon.	

LIST OF ABRIVATIONS

S/2 d 2 _ Half spiral cut once in two days frequency S/2 d3 Half spiral cut once in three days frequency _ DRC Dry Rubber Content _ TSC **Total Solid Content** _ NRC Non rubber content _ ET Ethephon _ NRL Natural Rubber Latex -VFA Volatile Fatty Acid _ ISO International Standard Organization _ NR Natural Rubber _ EB% Percentage elongation at break _ $\mathbf{M}\mathbf{W}$ _ Molecular weight MWD Molecular weight distribution _ \mathbf{P}_0 **Plasticity Number** PRI **Plasticity Retention Index** _ HFA Higher Fatty Acid _ Fourier transform Infrared spectroscopy FTIR _ Cross link density CLD _ IPP Isopentenyl pyrophosphate _ **SRPs** Small rubber particles -LRPs Large rubber particles _

ACKNOWLEDGEMENT

I owe a sense of gratitude to Prof. Laleen Karunanayake and Dr.A.H.R.L Nilmini, my supervisors for their guidance, encouragement and advice throughout this study. Apart from I am very much grateful to Prof. Asoka Nugawela, former Director, Rubber Research Institute, Sri Lanka for giving me this opportunity to carry out this study. I would like to express my heartiest gratitude to the Chairman, RRB and Director, RRISL Dr. Gamini Seneviratne and Dr.Susantha Siriwardena, Deputy director(Technology) permitting me permission to carry out this project. Every support given by all the staff of Raw Rubber and Chemical Analysis Department is sincerely acknowledged. I offer my heartiest thanks to Ms.Champa Lokuge and Mr.Pradeep for giving their fullest support throughout the study. I wish to give my special thanks to Dr.Wasana Wijesuriya and Mr.Vitharana for statistical analysis and staffs of Biochemistry department & Plant Pathology department for extend their support to sample analysis.

My special respect goes to my dear friends, Dr.Sagari and Dr.Sarojani who greatly helped and encouraged me to complete this project successfully. Finally I wish to express my since gratitude to my husband Eranga and my mother for being strength throughout the study. Last I would like to express my appreciation to those who helped me to complete this project successfully.

Study on Ethephon (2-Chloroethylphosphonicacid) stimulation of Natural Rubber Latex on Physio-chemical and Mechanical Properties of Rubber

Anusha Priyanthi Attanayake

ABSTRACT

Low frequency harvesting systems were introduced as a solution for key challenges faced by the rubber industry, such as lack of skilled tappers, high cost of production and declining rubber prices in international market. So far in-depth comprehensive technological analysis on effect of ethephon concentration has not been done. Therefore, the aim of the present investigation was to identify the effect of stimulation on raw rubber and latex properties. Further, physico-mechanical properties and ultimate processability were studied. The results of the study revealed that the maximum rubber yield as well as optimum physico-mechanical properties could be achieved with 3% ethephon concentration and higher doses of stimulant did not further improve the production. Total solid content, dry rubber content and latex viscosity were reduced with the increased ethephon concentration with simultaneous increase of non-rubber content. Viable count of bacteria increased significantly; as a result of high non rubber and sugar content in more diluted latex. Packing efficiency of latex enhanced by the production of small rubber particles with the increase of ethephon concentration, which leads to superior green strength for latex casting film. Therefore, stimulated latex could be recommended for the applications such as gloves, balloons and exercise belts. Extremely high plasticity retention index value and high ageing resistance were reported with rather low Mooney viscosity

and elasticity value which would be of advantage in-terms of product manufacturer's perspective. Lovibond colour index improved up to 3% due to retardation of enzymatic discolouration by thiol compounds. However, higher doses of ethephon lead to discoloration of rubber. Stimulation enhanced the production of short polyisoprene chains, with significant reduction in plasticity number, viscosity averaged molecular weight and increased the storage hardening and gel formation. However, above properties were at an acceptable level up to 3% ethephon concentration.End to end linkage of linear polymer of relatively long chains with very short chains create highly cross linked network which can tolerate the applied stress. Outstanding properties i.e. high tear strength, percentage elongation at break and elastic modulus were attributed to the bimodality in chain length. Relatively long chains serving to retard rupture while limited extensibility of very short chains improve the elastic modulus and ultimate strength. 3% ethephon concentration could be recommended as the best in terms of cure characteristics of unfilled compound rubber with maximum scorch safety time, maximum cure time and highest cure rate index. Due to vulcanization accelerator activator effect of decomposition products of proteins stimulated rubber imparts high cure rate than the control. Latex and raw rubber properties with the application of 3% ethephon revealed that, maximum effective time was 15 days after stimulation which would be a drawback of stimulation. Application of recommended dosage may only provide the optimum properties and higher doses may deteriorate the expected results. Dynamic and Physico-mechanical properties of stimulated rubber prepared with different filler loadings and application of glutathione in latex stage to replace or reduce the dosage of bleaching agent are among the future interests.